京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何在商业银行战略规划中发挥作用
近两年,大数据如何应用一直是各方探索的重点。所谓大数据,是在计算机存储能力、计算能力、计算技术、计算速度大幅增长的基础上,对海量数据复杂处理的产物。大数据常常被定义为海量数据“需要新处理模式”才能发挥巨大价值,这也说明其是计算机技术高速发展的产物。
对金融机构来讲,大数据的运用也是一个亟待挖掘的“富矿”。今天开始,老张用一个系列来聊一下大数据与商业银行管理的关系。第一篇我们先来谈一下大数据与商业银行战略规划。
对金融机构来讲,大数据的运用也是一个亟待挖掘的“富矿”。今天开始,老张用一个系列来聊一下大数据与商业银行管理的关系。第一篇我们先来谈一下大数据与商业银行战略规划。
银行战略规划需要海量数据
从逻辑上讲,银行管理中没有哪个板块比战略规划更需要大数据。世界经济形势、各国货币和财政政策、政治地缘关系、大宗商品价格、国际贸易状况、局部战争等国际问题,都可能影响中国进出口贸易,影响国内企业经营状况、影响某个产业的发展趋势,商业银行在制定战略规划涉及到是否走出国门、选择战略业务方向时,就不能不考虑国际政治、经济问题,而且银行规模越大,其意义也越大。
同样的问题反映在国内,则需要关注中国经济周期、经济形势、国家发展战略、产业政策、货币政策、财政政策、区域政策、地区间经济差异、各行各业发展现状及趋势等。一个商业银行如果制定三年、五年甚至更长时期的发展战略,这些问题显然不能不考虑。
银行内部数据可以反映出商业银行自身的特质,包括客户类型、客户数量、产品特性、区域业务数据、行业分布、利润水平、成本特征等,把握好商业银行内部数据特征,是商业银行战略规划的起点和基地,是一个商业银行核心竞争力的表现,同时也是银行在客户开发、产品开发、区域开发等战略规划的起点,内部数据的分析一定要做好。
银行内部数据可以反映出商业银行自身的特质,包括客户类型、客户数量、产品特性、区域业务数据、行业分布、利润水平、成本特征等,把握好商业银行内部数据特征,是商业银行战略规划的起点和基地,是一个商业银行核心竞争力的表现,同时也是银行在客户开发、产品开发、区域开发等战略规划的起点,内部数据的分析一定要做好。
现状:行内数据相对完善 行外数据基本未入库
理想很丰满,现实总是很骨感。制定商业银行战略时,国外、国内、行内的数据显然越多越好,而现实情况是,商业银行很少将行外数据纳入其信息规划主流数据仓库,行外数据经常以原始数据来源格式存储在战略规划制定部门的数据文件夹中,有时还要根据需要到付费数据服务商处查询。
产生这种情况的原因有很多:
首先,数据范围广。对战略制定来说,数据是“韩信点兵、多多益善”,恰恰是这个多多益善,导致商业银行很难自己构建数据库来满足战略规划制定;
其次,数据不规范。需要的数据越多,数据的规范性越差,导致图片、视频、音频、文字等各种数据格式都有,将各种格式的数据归类、整理、清洗并建模,获得有价值的决策支持信息,难度非常大;
第三,单体数据价值小。对战略规划来说,每个信息都有价值,但具体到各类数据,其价值却可能不大,因此,在数据采集时,要获得信息管理部门的同意和支持,并整理入库的难度非常大;
第四,成本问题。虽然理论上讲,大数据分析是有价值的,但现实是,成本是显性的,收益是隐性的,特别是战略决策虽然基于大量的数据分析,但最终的决策却存在很大的主观性,定性的判断、领导的判断在战略方向的选择上,处于非常重要的位置。因此,成本问题也是约束大数据在战略决策中价值发挥的“拦路虎”。
综合来看,虽然大数据概念产生和广泛使用已有一定时间,但商业银行战略规划制定过程中的作用并不大。行外数据基本与数据库无缘,行内数据的完整性、有效性虽然完善了很多,但由于数据安全等制度约束,数据使用的便捷性和灵活性还存在很大不足。
未来前景:大数据外包服务商和人才外包
大数据在商业银行战略制定中的价值开发,必须考虑商业银行的特性。一方面,商业银行从大到小,规模相差几千倍甚至上万倍,不同等级的商业银行在成本投入、人才储备等方面的差距也很大;另一方面,不同类型的商业银行,对数据需求的着力点也不一样,大型商业银行更看重国际形势、国内形势、行业趋势,小银行更看重国内形势、区域特征。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07