京公网安备 11010802034615号
经营许可证编号:京B2-20210330
由林彪常胜秘诀数据分析所想到的
林彪从红军带兵时起,身上就有个小本子,上面记载着每次战斗的缴获、歼敌数量。一般人难以想象,这种坚持正是林彪几乎每战必胜的来源。对于“数据”的积累和运用,林彪行军打仗能给我们怎样的启迪?
数据从收录大量细节信息开始
自1948年辽沈战役,每天深夜林彪都在东北野战军前线指挥所里听取军情汇报,由值班参谋读出下属各个纵队、师、团用电台报告的当日战况和缴获情况,而林彪则认真细致地记录着他的大数据:
每支部队歼敌多少、俘虏多少;缴获的火炮多少、车辆多少、枪支多少、物资多少……
作为司令员,林彪的要求很细,俘虏要分清军官和士兵,缴获的枪支,要统计出机枪、长枪、短枪,击毁和缴获尚能使用的汽车,也要分出大小和类别。经过一天紧张的战斗指挥工作,疲劳的林彪坚持着这个规矩,只叫读电报的参谋“倒霉”。
此外,林彪几乎每天都骑着椅子长时间面对着墙上的地图,不许别人打扰,一个人对着地图观察和思考。他要计算到进攻时有全胜的把握,还要留出退路。而这些精确的部署都来自于那些看上去乏味的数据准备。然而在很多人看来,大量繁杂的数据,耗时费力地重复记录,似乎没有意义,但是那些用心积累起来的大数据正是林彪几乎每战必胜的源头。
从数据中找到最有价值的“用户”
1948年10月14日,东北野战军以迅雷不及掩耳之势,仅用了30小时就攻克了对手原以为可以长期坚守的锦州,并且在全歼了守敌十余万之后,不顾疲劳挥师北上,与从沈阳出援的敌方精锐廖耀湘集团二十余万在辽西相遇,一时间形成了混战。战局瞬息万变,谁胜谁负难以预料。然而,一件小事却改变了双方的胜负命运:
一天深夜,值班参谋正在读着下面某师上报下属部队的战报,说他们的部队碰到了一个难度不大的遭遇战,歼敌部分,其余逃走。与其它之前所读的战报看上去并无明显异样,值班参谋就这样读着读着,林彪突然叫了一声“停!”。他眼里闪光,问道:“刚才念的在胡家窝棚那个战斗的缴获,你们听到了吗?”
在场的人睡意已深,似乎没有在意那些枯燥的数字,无人回答。林彪扫视一周,又接连问了三句:
“为什么那里缴获的短枪与长枪的比例比其它战斗略高?”
“为什么那里缴获和击毁的小车与大车的比例比其它战斗略高?”
“为什么在那里俘虏和击毙的军官与士兵的比例比其它战斗略高?”
其他人还没有来得及思索,林彪已经等不及了,他大步走向挂满军用地图的墙壁,指着地图上的那个点说:“我猜想,不,我断定!敌人的指挥所就在这里!”
林彪如此笃定,取决于他每晚必做的功课,这些战报汇集成林彪脑中一个庞大的数据库,当出现差异,他可以及时获取,得到准确信息,找出价值所在。从大批杂乱无序的数据中将信息集中、提炼,分析出研究对象的内在规律,林彪对兵力的计算可以精确到一个营甚至一个连。以当时的条件设备,再加上人工的费时费力,作为统领千军万马的林彪尚能如此,可见他管理的精细化,而现在拥有更多手段、先进技术的人们,是否能从林彪身上学到了什么?
重点服侍“廖耀湘”类的VIP
得出结果之后,林彪立即口授命令,追击从胡家窝棚逃走的那部分敌人,并坚决把他们灭掉。各部队要采取分割包围的办法,把失去指挥中枢后会变得混乱的几十万敌军切成小块,逐一歼灭。而此时的廖耀湘,正庆幸自己刚刚从偶然的一场遭遇战中安全脱身并与自己的另外一支部队汇合。他来不及休息就急于指令各部队尽快调整部署,为下一阶段作准备。然而好景不长,紧追而来的解放军迅速把他的新指挥部团团围住,拼命攻击。
漫山遍野的解放军战士中,不断有人喊着:“矮胖子,白净脸,金丝眼镜,湖南腔,不要放走廖耀湘!”把对方指挥官的细节特征琢磨到如此细微,并变成如此威力巨大的顺口溜,穿着满身油渍伙夫服装的廖耀湘只好从俘虏群中站出来,无奈地说“我是廖耀湘”,沮丧地举手投降。
廖耀湘想不到自己静心隐蔽的精悍野战司令部那么快就被发现、灭掉,觉得不可思议,认为那是一个偶然事件,输得不甘心。而当他得知林彪是如何得出判断之后,这位出身黄埔军校并留学法国著名的圣西尔军校,参加过滇缅战役,在那里把日本鬼子揍得满地乱爬的新六军军长说:“我服了,败在他手下,不丢人。”
林彪取得这场重要战役胜利的一个关键因素,居然出于对一份普通遭遇战之后的战报数据分析,实在令人叹服他的“从红军带兵时起,身上有个小本子,上面记载着每次战斗的缴获、歼敌数量”的优良军事素养。
林彪打仗取胜考的是数据分析,而志愿填报也是一样需要数据分析,孙成老师认为:志愿填报是一个系统工程,不能仅仅根据分数匹配大学,而是要根据数据的积累、挖掘、分析、归纳和整理,结合孩子的性格、兴趣、能力、价值观等进行大学和专业的选择。只有全面梳理,认真分析,紧密结合才能事半功倍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06