
大数据发展遇瓶颈 应用创新是王道
2016年5月12日-14日,第七届中国数据库技术大会(DTCC 2016)在北京国际会议中心拉开帷幕。作为国内数据库与大数据领域最大规模的技术盛宴,在为期三天的会议中,大会将围绕MySQL、NoSQL、Oracle、缓存技术、云端数据库、智能数据平台、大数据安全、数据治理、大数据和开源、大数据创业、大数据深度学习等领域的前瞻性热点话题与技术展开深入探讨,并邀请一大批国内顶尖的技术专家来进行分享,以满足广大从业人士和行业用户的迫切需要。
本届是大会创办以来,规模最大,参会人次、参展合作伙伴最多的一次盛会,云集了来自五湖四海的5000余名IT精英,相聚在这里,共话数据库技术发展潮流,共赴大数据浪潮之巅。在“大数据基础设施”专场,人大金仓大数据业务部总监白芸进行了题为《数据之道 笃行拓新》的主题演讲
作为数据库技术大会上为数不多的女嘉宾,而且又这么高颜值,那小编先818美女嘉宾简介吧——【毕业于中国人民大学信息学院,获得计算机及应用专业硕士学位。 毕业后进入北京人大金仓信息技术股份有限公司,参与金仓数据库产品的研发,曾任咨询服务部总监、产品中心总监,现任大数据业务部总监,负责大数据系列产品研发,以及大数据解决方案的咨询和实施服务。】
自主可控数据管理下的大数据业务
当前,“互联网+”、大数据、云计算成了各个传统行业追逐的焦点,在这些关键词的背后,无不体现着“网络强国”的宏观战略部署。随着大数据发展上升为国家战略,作为一个老牌国产数据库企业,人大金仓又是如何开展这项业务呢?白芸在数据库大会的演讲中介绍了人大金仓的大数据业务:
【解决方案】提供360度全景大数据解决方案,包括项目全流程支持—提供大数据规划、实施、运维全流程的技术支持;数据全生命周期管理—数据产生、获取、处理、存储、治理、分析、应用。
【核心产品】提供提供全栈大数据产品线,结合实际业务场景需求,形成最合适的大数据解决方案。全方位产品支撑:数据采集、存储管理、分析挖掘、数据利用。
产品包括——大数据平台KingbaseDP;数据资源管理平台KingbaseDRP;数据整合工具KingbaseDI;商业智能平台KingbaseSmartBI
【实施服务】依托专业服务实施团队,凭借多年数据领域经验,助理客户大数据应用顺利上线。
人大金仓大数据中心基础架构
先来看看传统数据仓库与大数据中心的差别,如下图:
接着是数据仓库向大数据中心的演进:集成大数据和数据仓库能力以增加数据资产价值,提高数据运营能力。低成本的高可靠硬件平台,采用x86平台可节省大量成本及后期维护费用;集成的数据采集平台提供对结构化、非结构化数据进行批量、实时的采集处理能力,并能提供无限制的扩展和高性能处理能力;优化海量数据存储于处理平台基于Hadoop技术的实现,优化的产品级海量数据存储于处理平台,实现对于各类大数据的低成本的存储和分析,具备无限制的扩展能力;增强的分析能力体系可在原来传统数据分析的基础上增加如文本、图像、视频等分析功能。
大数据中心基础架构图
在这里,小编只是截图了一个基础架构图示,具体的技术架构展示部分,可以到《DTCC2016数据库技术大会PPT文集》中查看或下载。
数据、技术、应用三层面分析大数据发展所遇瓶颈
在演讲结束后,小编对白芸进行了专访,在采访时问到目前国内政府大数据发展面临的诸多瓶颈,白芸从三个层面进行了分析。
“政府部门的数据来源于内部和外部。”从数据层面面临的困境看,政府内部数据其实远远不止局限各部门掌握的自身业务数据,还须清楚地认识到不同系统数据的内在关系,数据结构是否存有冗余,数据存储是否是“信息孤岛”。
此外,就外部数据而言,不同的政府部门在大数据建设过程中,究竟还需要哪些外部数据?外部数据通过什么方式获得?数据获取过程中需建立怎样的合理机制?在白芸看来,以上种种疑难都是政府大数据建设过程中考量的焦点。“比如,住建部门根据自身数据只能了解房屋的售出率,如需分析售房屋的空置率,或许就要参阅房屋的水表、电表信息,这就需要协调水务、电力等部门的数据。”
而在大数据的应用方面,白芸认为,现在很多应用场景并没能逃离以往的场景设计。“真正的大数据应用并不是仅仅根据现有数据绘制一份报表、一个曲线图,就能称之为大数据产品,这些依旧是一种传统的统计和数据分析。”
从数据到具体应用场景的实现过程,大数据技术的重要性自然不言而喻。而随着具体应用场景的细化和复杂度加深,数据操作方如何采集数据?如何对原始数据脱敏、加密?如何进行数据建模?白芸认为,这些挑战都需要在技术层面的不断加强。
总结
“目前,国内大数据行业在数据和技术方面发展程度与国外步伐相近,但与国外大数据应用方面还存在很大差距。”白芸在采访中说道。
随着国内信息化的进步以及系统替代人工进程加快,信息化将逐步解决业务加速和职能高效的问题。在此基础上,大数据应用也将呈现出从无到有、再到优化和增值的趋势。在这个过程中,应用方自然会探索自身业务产生的数据究竟有多少价值,还能创造多少价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18