京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据发展遇瓶颈 应用创新是王道
2016年5月12日-14日,第七届中国数据库技术大会(DTCC 2016)在北京国际会议中心拉开帷幕。作为国内数据库与大数据领域最大规模的技术盛宴,在为期三天的会议中,大会将围绕MySQL、NoSQL、Oracle、缓存技术、云端数据库、智能数据平台、大数据安全、数据治理、大数据和开源、大数据创业、大数据深度学习等领域的前瞻性热点话题与技术展开深入探讨,并邀请一大批国内顶尖的技术专家来进行分享,以满足广大从业人士和行业用户的迫切需要。
本届是大会创办以来,规模最大,参会人次、参展合作伙伴最多的一次盛会,云集了来自五湖四海的5000余名IT精英,相聚在这里,共话数据库技术发展潮流,共赴大数据浪潮之巅。在“大数据基础设施”专场,人大金仓大数据业务部总监白芸进行了题为《数据之道 笃行拓新》的主题演讲
作为数据库技术大会上为数不多的女嘉宾,而且又这么高颜值,那小编先818美女嘉宾简介吧——【毕业于中国人民大学信息学院,获得计算机及应用专业硕士学位。 毕业后进入北京人大金仓信息技术股份有限公司,参与金仓数据库产品的研发,曾任咨询服务部总监、产品中心总监,现任大数据业务部总监,负责大数据系列产品研发,以及大数据解决方案的咨询和实施服务。】
自主可控数据管理下的大数据业务
当前,“互联网+”、大数据、云计算成了各个传统行业追逐的焦点,在这些关键词的背后,无不体现着“网络强国”的宏观战略部署。随着大数据发展上升为国家战略,作为一个老牌国产数据库企业,人大金仓又是如何开展这项业务呢?白芸在数据库大会的演讲中介绍了人大金仓的大数据业务:
【解决方案】提供360度全景大数据解决方案,包括项目全流程支持—提供大数据规划、实施、运维全流程的技术支持;数据全生命周期管理—数据产生、获取、处理、存储、治理、分析、应用。
【核心产品】提供提供全栈大数据产品线,结合实际业务场景需求,形成最合适的大数据解决方案。全方位产品支撑:数据采集、存储管理、分析挖掘、数据利用。
产品包括——大数据平台KingbaseDP;数据资源管理平台KingbaseDRP;数据整合工具KingbaseDI;商业智能平台KingbaseSmartBI
【实施服务】依托专业服务实施团队,凭借多年数据领域经验,助理客户大数据应用顺利上线。
人大金仓大数据中心基础架构
先来看看传统数据仓库与大数据中心的差别,如下图:
接着是数据仓库向大数据中心的演进:集成大数据和数据仓库能力以增加数据资产价值,提高数据运营能力。低成本的高可靠硬件平台,采用x86平台可节省大量成本及后期维护费用;集成的数据采集平台提供对结构化、非结构化数据进行批量、实时的采集处理能力,并能提供无限制的扩展和高性能处理能力;优化海量数据存储于处理平台基于Hadoop技术的实现,优化的产品级海量数据存储于处理平台,实现对于各类大数据的低成本的存储和分析,具备无限制的扩展能力;增强的分析能力体系可在原来传统数据分析的基础上增加如文本、图像、视频等分析功能。
大数据中心基础架构图
在这里,小编只是截图了一个基础架构图示,具体的技术架构展示部分,可以到《DTCC2016数据库技术大会PPT文集》中查看或下载。
数据、技术、应用三层面分析大数据发展所遇瓶颈
在演讲结束后,小编对白芸进行了专访,在采访时问到目前国内政府大数据发展面临的诸多瓶颈,白芸从三个层面进行了分析。
“政府部门的数据来源于内部和外部。”从数据层面面临的困境看,政府内部数据其实远远不止局限各部门掌握的自身业务数据,还须清楚地认识到不同系统数据的内在关系,数据结构是否存有冗余,数据存储是否是“信息孤岛”。
此外,就外部数据而言,不同的政府部门在大数据建设过程中,究竟还需要哪些外部数据?外部数据通过什么方式获得?数据获取过程中需建立怎样的合理机制?在白芸看来,以上种种疑难都是政府大数据建设过程中考量的焦点。“比如,住建部门根据自身数据只能了解房屋的售出率,如需分析售房屋的空置率,或许就要参阅房屋的水表、电表信息,这就需要协调水务、电力等部门的数据。”
而在大数据的应用方面,白芸认为,现在很多应用场景并没能逃离以往的场景设计。“真正的大数据应用并不是仅仅根据现有数据绘制一份报表、一个曲线图,就能称之为大数据产品,这些依旧是一种传统的统计和数据分析。”
从数据到具体应用场景的实现过程,大数据技术的重要性自然不言而喻。而随着具体应用场景的细化和复杂度加深,数据操作方如何采集数据?如何对原始数据脱敏、加密?如何进行数据建模?白芸认为,这些挑战都需要在技术层面的不断加强。
总结
“目前,国内大数据行业在数据和技术方面发展程度与国外步伐相近,但与国外大数据应用方面还存在很大差距。”白芸在采访中说道。
随着国内信息化的进步以及系统替代人工进程加快,信息化将逐步解决业务加速和职能高效的问题。在此基础上,大数据应用也将呈现出从无到有、再到优化和增值的趋势。在这个过程中,应用方自然会探索自身业务产生的数据究竟有多少价值,还能创造多少价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16