
大数据分析当前对P2P信贷有什么用
当P2P发现了大数据之后,通过大数据对借款人进行特征分析,从而实现线上风控控制流程,这一直是无数人追求的梦想。但对于现在来说无论是人民银行征信系统或是大数据分析都过于浮夸,以下内容笔者愿就所认为之难处与大家讨论。
虽然现在人民银行征信系统数据还没有对接,但并不妨碍很多P2P平台拿这个做宣传,拿这个作为P2P行业跨向新纪元的钥匙。下面我们来简单的分析一下征信系统对于P2P行业是否真的有天翻地覆的神奇功效。
中国的征信系统截至去年年底收录自然人8.3亿,收录企业及其他组织将近2000万户,包含了以基本信息及银行信贷为核心的数据,还包括社保、公积金、环保、欠税、民事裁决与执行等信息,看似数据量相当充实,但是仅凭借这些信息就能确定这个人到底是否可以借款以及借款多少了吗?目前光P2P平台就还包括了手机清单、收入证明、家属身份信息、驾照、房产等34项信息,征信系统本身也只能满足现在P2P需求的一部分而已。甚至连征信中心的一位负责人都公开表示:你不能通过征信信息就给别人放款,关键还是需要自己做好风控。
当然,现在有很多人也在说大数据,我认为理想状态是可以达到的,大规模获取海量数据,然后加以分析,再结合央行征信,可以精准的判断出一个借款主体的资金用途和还款能力,想想真是,做梦也会笑啊。但是梦想就像泡沫,一戳就破。在这个过程中有两个问题要亟待解决。
第一:如何获取数据?理想中的P2P大数据征信是多维度非相关数据,我们需要用户社会学基本数据信息、现金流信息、行为偏好、信息偏好、人际网、迁徒特征、消费场所信息。打一个比方,在线下做风控的时候我们经常会问借款人的邻居对借款人的印象如何,无论邻居说“他是一个勤劳朴实人”亦或是“他天天出去打牌”这些信息对信贷审核都有至关重要的影响,但是到了线上我们通过什么途径才能获取到我们想要的数据呢?
第二:我们如何分析这些数据?目前,有复杂数据积累并且已经具备大数据分析基础的公司只有百度和阿里两家,同时这两家公司都在至少五年前就开始投入大量资源探索大数据业务。五年后的今天这两家公司数据分析到达如何地步了呢?百度公司每天净增数据量1PB,说的通俗易懂一点就是每天百度净增数据大约4千亿页文本的样子,但这其中99%都是无效数据,如何筛选出有效数据目前还是一个无法攻克的难关。回看阿里呢?数据使用率5%,依然是大量无效数据,如何对这些数据进行分析也是一筹莫展。也就是说大数据的第一个关卡就剩两家公司了,第二道关卡可能要卡很多年。
好了,现在我已经感受到有人在心中默念美国最大的P2P平台lending club了,那么我就看看他们是如何做到线上风控的。
首先用户在平台上申请借款,lending club在得到用户许可的情况下从experian/trans union/equifax三家大征信局获得用户的信用评分,不同分数有不同额度,也承受不同成本。审核通过后webBank向借款人发放贷款再转让给lending club,最后在转让给投资者。最重要的是,lending club与foliofn合作,推出了线上债券交易平台,当有用户逾期时,可以将债权在该平台上转让,专业投资者会在上面进行债券购买,数据显示,逾期16天以内的债权能在10%左右的折扣下出售,逾期16~30天的债权能在30%左右的折扣率成交。lending club有三个核心元素,第一:200年完善的征信体系。第二:非标准资产能够有效证券化。第三,有长期的历史数据对风险水平进行定价。以上三点目前中国还不具备。
综上所述,中国目前还不能依靠征信或者大数据解决信贷审核问题,就好像袁隆平老师杂交水稻一样,先试几年,抗虫害够硬、对环境没有破坏、确定能够大幅增产了,再大面积推广。未来即便征信系统对接完毕了,我也希望P2P平台能够以审慎的原则对待它,别上来就临床治疗,会出人命的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30