
小白学数据分析--流失分析设计
前段时间说过一些关于玩家生命周期的问题,其实那些有点大,有点虚,从宏观的角度了解我们此时此刻正在做的分析是属于那一部分,哪一个体系的,说实话,这是为了建立一种意识而要做的工作,玩家生命周期价值源于电信行业的客户生命周期管理和PLC(产品生命周期)的解读和应用,限于本人水平和能力因素,不够深刻,全面,在此请各位谅解,以后的内容会逐步深入到这个体系之下的很多细节的问题探讨,今天就和大家简单说说流失率。
说到流失率,我们可以考察,可以分析,可以利用的点实在是太多了,这里我也不可能把所有的东西都覆盖,仅从几个指标来说说,至于其他的关联分析部分需要大家自己来看和分析(不要陷入一个误区,那就是我说的这些就是流失率的全部)。
流失率在网游产品的运营过程中,是非常重要的一块,可惜很多时候我们做的并不够细致和仔细。流失分析其实是一个系列的过程,不仅仅是找到流失的原因(这是我们做的最多的部分),还有其他的流失管理部分,而这里大家可以看出来这是一个过程。
流失特征提取:准确的说这是玩家流失的特征的提取,哪些玩家有流失的倾向,比如玩家处在何等级可能流失加剧,在线时长达到多少可能会有游戏疲倦加剧流失,与那部分系统交互较多的玩家易流失,那个角色的玩家群体流失倾向明显。这个阶段我们做的很多工作室一种预警性质的工作,通过对数据的处理分析得到玩家可能流失的特征。
流失原因分析:流失原因的分析首先我们可以从前期提取特征的方面下手分析,先把提取的流失特征进行整合分析,归结一下是否是玩家流失的原因。如果流失原因不是我们前期提取的预警流失的特征,且玩家依旧流失,我们就需要找到新的流失因素,并把这些因素归结到流失特征提取环节,这样流失特征会积攒大量的流失预警的提取数据点。
再者,尽管我们进行流失特征提取并采取防流失的
手段,但是可能效果和受众并不是很理想,此时依旧会有比较大的流失,因此我们还要分析和评估挽留策略的效果。
挽留策略制定:其实挽留策略的制定在流失特征提取时就已经制定了,在玩家非流失阶段就做好流失的预防措施,这是防流失最好的办法,当已经发生流失了,某种意义上说是我们制定的策略效果不佳或者未考虑的因素促使流失的上升,挽留策略是我们提升人气,降低流失的关键之举。但是不意味着好的策略就一定会有好的结果。
挽留策略实施:挽留策略制定好了,还需要整个运营团队,营销团队,程序,策划的共同配合执行和实施,才能达到良好的效果,而这也不是绝对的,往往我们会受制于某些因素的影响,比如实施难度,排期等等。
挽留策略评估:如同我们所做的一个活动一样,我们需要有针对型的进行评估和分析,目的在于不断的修正我们的策略,不断适应我们游戏玩家和产品的发展需求。今天就说怎么来判断流失用户,流失用户的标准是什么?
流失的定义之说
在对于流失问题上,每个企业和产品会根据自己的需求来定义流失率,流失率定义的分类方法有很多,确定什么是流失用户对于完成我们的流失分析很重要。流失分析主要是从玩家属性和玩家与产品的关系两面入手。玩家属性多是玩家的物理属性,而我们要分析的是玩家与产品的关系,在这方面我们从玩家的整体在游戏的留存情况下手。
在解释以上的术语之前,我们约定以上的用户分类分析是以月为度量单位展开的分析。并且以下的分析是以历史玩家和登录时间间隔为维度进行的定义和分析研究。关于流失的分析还可以从新玩家和登录时间间隔考察、历史玩家和付费与否、新登玩家和付费与否,不断将几种标准组合,就会进一步提取分析流失人群的特征。此外,还有比如定向的研究付费玩家的购买流失分析等等。
历史用户:如上述,是在上个月之前就已经成为游戏的玩家。而今天我们所要进行的用户定义是历史用户,再此前提下进行以下的流失定义和分析。如果用一个伪甘特图表示如下所示:
留存用户:历史登录过游戏,且上个月和本月均登录游戏的玩家,这类玩家是留存玩家,伪甘特图如下:
沉默用户:也叫做轻度流失用户,一般的网游产品定义的流失就到此层次就OK了,但是这只是轻度流失,沉默用户是历史登录过游戏,上个月登录但是本月未登录游戏的玩家。伪甘特图如下:
流失用户:这里其实是重度流失,历史上有过登录,但是上个月和本月均未登录游戏的玩家,伪甘特图如下:
回流用户:历史有过登录行为,上个月未登录,但是本月登录游戏的玩家,伪甘特图如下所示:
植物用户:所谓植物用户主要分两类,一类是历史用户在上月和本月都没有登录的情况下,在下个月玩家回归游戏,此类用户称之为唤醒用户,如同植物人最后苏醒一样,该类用户的回归完成了一个闭环的过程。
所谓的闭环是玩家从唤醒状态最终回归到留存或者回流的状态(按照定义是这样)。此外还有一类用户就是没有被唤醒的植物用户,这一类就基本上从游戏中流失掉了。
以上是几类不同程度流失用户的详细解释和描述,这几类用户的细分,可能有些细致了,然而精准的把握这几类用户将有助于帮助我们寻找玩家的流失特征,从而在不同的时期,针对不同的玩家制定相应的挽留策略,出发点就是从每一种过渡状态尽可能降低玩家的转化,因为每当用户向下一个状态转化,就意味着流失的加剧和损失上升。
今天的流失细分主要是从老玩家的角度出发的,有一组数据说明了我们细分用户,挽留老用户的必要性。一个企业争取一个新客户的成本是保留老客户成本的5倍;客户流失率降低5%,利润增加25%-85%;一个满意的客户会带来8笔潜在的生意,一个不满意的客户则可能影响25个人的购买意愿,忽略对老用户的关注,大多数企业会在5年内流失一半的顾客。尽管没有针对网友行业的数据,不过就此看出来,挽留策略是企业盈利的保证和核心,而挽留策略从哪里来针对谁,这就是流失分析的要做的事。
最后回归到开始的话题上,如果我们要做一次活动的评估,究竟该怎么下手?这里我觉得有一方面通过对以上的人群进行分析,能够看到一些我们想要的。我们把人群找出来了,下面通过一系列的具体分析找出一次活动该如何分析,该如何制定下次活动,有针对的,精准的定位人群,精准营销。
活动对象:通过聚类分析、异常分析、RFM分析、决策树、神经网络、logistics等方法提炼不同人群的特征,进而有的放矢;
如何营销:不同的人群,不同的购买习惯,可以使用关联分析、序列分析;
时间营销:挖掘整个玩家的在时间维度上变化和行为,生命周期挖掘、时间序列、回归分析;
如何评估:T、卡方检验、对比分析,环比同比。
以上为流失分析的一种设计方式,如之前所提到的,流失分析还可以从其他维度开展,但是尽管这样设计了,实际操作时还要结合很多的方法和其他设计进行分析,比如对于每类人群进行聚类分析,寻找与产品 等有关的信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29