京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据+品牌营销”的正确打开方式
近年来,随着大数据技术的日臻成熟,企业越来越多重视大数据的数据分析和报告,便于实时洞察社会经济发展趋势,了解市场的发展变化、紧跟市场需求改进产品和提升服务。因此,如何从海量业务数据中挖掘有价值的信息和知识,提高运营效率和盈利能力,成为每个企业都将面临的重要挑战。
4月26日,由千家智客与华南理工大学新闻与传播学院联合策划举办的“大数据与智能品牌用户体验研讨会暨华南理工大学与智家科技产学研合作揭牌仪式”在华南理工大学大学城华工中心酒店隆重举行。
来自政府、学界、商界等多位重要领导及嘉宾,共同见证了华南理工大学与智家科技产学研合作揭牌仪式。此外,本次活动还针对大数据、人工智能等热点趋势进行分享交流,深入探讨智能化行业未来发展之路。
“大数据”成为品牌竞争的核心资本
移动智能终端设备以及互联网的普及,使得大数据的应用已经渗透到每一个行业和业务职能领域,成为企业预测市场、制定决策、洞悉消费者和竞争对手的重要依据。对于企业而言,随着市场经济的发展和新经济秩序的出现,大数据已经超越资产、技术、规模等因素,成为品牌参与新经济竞争格局中的核心资本。
纵观近几年的相关研究与企业实践,频频的大数据营销案例无不证明了其在市场营销领域存在的巨大价值。而作为本次活动的主题,“数造品牌?智创未来”更是直接了当地点出大数据在品牌建设中所发挥的重要作用。正如华南理工大学新闻与传播学院副院长段淳林在活动中提到的那样,大数据时代的到来深刻地改变着传统商业模式与管理思维,任何品牌企业都不能无视这一时代发展趋势。
而本次千家智客和华南理工大学的产学研合作,正是将大数据挖掘、分析技术运用在品牌价值评估、品牌建设当中,通过收集有关品牌价值评估指标需要的海量数据,并根据大数据的流计算和分析系统对品牌价值做出精准评估。实时向企业决策者动态报告该品牌价值的变动情况,为企业品牌投资、融资、市场开拓、形象扩张等做出智慧的决策。
以产业研项目为基点,撬动行业创新
“媒体产业的融合、新媒体的崛起,对传统媒体和新媒体发展研究提出了新的挑战,同时也带来了巨大的发展机遇。”千家智客CEO喻娟在活动中表示:“此次华南理工大学与智家科技的产学研合作,开启了媒体平台、品牌企业、和学术机构融合发展的新模式,对国内智能化行业的资源组合形式和重构、品牌营销方式的改革都将产生深远的影响。”
作为专注于建筑智能、家居智能、人工智能的综合服务平台,千家智客将汇聚其在全媒体营销、千家活动、玩物说、品牌数库、方案交易等方面的行业优势,与华南理工大学共同打造大数据与智能品牌用户体验研究联合实验室、华南理工大学与智家科技产学研基地、华南理工大学与智家科技大学生实习基地、华南理工大学与智家科技科技特派员基地等多体化创新联合平台,为智能化行业提供新媒体产品创新与研发、用户体验改进、数据分析挖掘等多方面的支持。
同时,也帮助品牌企业在激烈的市场竞争中实现商业模式创新,同时促进智能化行业在经济新常态背景下的融合转型。
人工智能+大数据,未来智慧生活方式
随着大数据时代的到来,人们的各种互动、设备、社交网络和传感器正在生成海量的数据。唯有借助机器学习、人机交互等手段才可以更好地处理这些数据,挖掘其中的潜在价值。科大讯飞股份有限公司高级副总裁杜兰在现场演讲中肯定道,先进的分析和互动性的数据可视化技术已经成为开发一系列人工智能新应用和服务的关键所在。
而广州零号软件科技有限公司CEO向忠宏也明确表示赞同这一观点,他认为,单一的人机交互方式无法满足智能硬件多元应用场景的需要,未来的人机交互方式将借助新型的传感器、更强大的计算能力,对海量的大数据来进行演算分析,真正的让机器去记录和适应人的行为习惯,而不再是人们学习使用机器或是简单地改变用户的界面体验。
懂你所想、急你所需,是对新一代人工智能技术的期望与要求。借助大数据与人机交互结合产生的附加效应,智能家居、智能硬件将彻底摆脱“能而不智”的尴尬局面,真真正正走入用户的生活当中。
结语:应对行业竞争,“大数据+品牌营销”可谓是企业未来发展的必由之路。但是,大数据技术同时也对企业的自身本领提出了新的要求。其不仅需要在海量数据的搜集、存储、管理、分析、挖掘与运用都自成体系,还要满足个性化品牌传播等方面的要求。除此之外,提高产品质量、提升品牌售后服务也是树立品牌的不二法门。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16