
如何通过数据分析进行商品陈列管理
随着零售行业竞争的加剧,越来越多的运营管理技术不断得到实施和运用,例如:RFID,EDI等技术,而ECR(Efficient Consumer Response)--“高效率消费者回应”的运用尤为行业所关注〈其主体是:品类管理及其四大效率策略(品牌优化/促销推广/库存补充管理/新品引进),尤其是品类管理的实施运用将是今后国内零售行业的发展趋势,这一概念在国外最早出现在90年代,随着国内零售行业的发展,这一概念在国内被逐步认可和重视,例如,国内知名零售企业“人人乐”早在2年前就成立了专门的品类管理小组进行品类管理的专门研究,全国连锁百强排名第4,国内最大的连锁超市“华润万家”也在部分区域部分门店试点推广品类管理技术。但这些新的运营管理技术的实施推广都离不开最基本的商品陈列来进行支持。而通过数据分析来进行商品陈列管理来达到销售和陈列成正比是这一技术得以有效实施的关键。
而商品陈列对于超市来说是一项日常重要的基本工作,所有的销售都是通过陈列展示来完成,好的商品陈列能够有效的提升客单价,提高坪效和周转率。
下面就来简单的介绍一下如何通过数据分析来进行商品陈列管理。
通过20/80法则选择重点品类或重点单品
意大利经济学家柏拉图(V。F D Pareto)认为,大部分的充裕都被小部分的富裕者拥有,这理论更成了柏拉图定论,这理论指出社会上的小数(10%-20%)影响结果的80%-90%,而大数则影响小于10%。将这样的理论运用到商品的销售管理上,20%的顾客购买的商品产生的销售贡献是门店销售的80%,20%的品类或单品产生的销售贡献是该部门或该品类的80%,或者说少数的部门产生的销售贡献是门店销售整体的大部分,找出这些部门/品类或单品去重点关注/重点管理是非常重要的。
这也是我以前的文章里提到的根据我个人多年的零售行业经营管理经验总结出的基本经营理念:提前强化季节性商品,强化重点品类,突出重点单品!
重点关注/重点管理就是从这些影响较大的商品部门/品类或单品开始。
了解了这些我们可以通过柏拉图分析去管理商品
以下面A小类10个单品一周的销售为例说明:
我们将上述数据按照销售额由大到小排列,计算出每个单品占销售比例并由大到小将销售占比累计可以得到以下的表格:
我们将这些数据用柏拉图曲线表达出来
从上面的图表我们可以看出:B,D,G三个单品的销售占到这个小类销售的74% ,由于这3个单品占该小类销售的大部分,我们应该优先和重点管理这3个单品(从订单/收货/补货/陈列展示/销售维护/断货控制等环节全程重点关注)
我们的时间和精力都是有限的,因此我们将精力和时间尽量全部用在管理最能影响销售的单品/品类/部门上。
同时我们为了方便进行重点单品/品类/部门管理,我们可以将商品分成A,B,C,三类,运用ABC分析法进行商品管理。
ABC分析法可以运用于较多的单品数量管理,即将单品分为A,B,C,3类,以方便管理。
通常A类商品占累计销售额的75% ,B类商品占75-95%之间,C类商品占95-100% 根据商品的重要性进行不同的管理,A类商品对总的销售额的影响比B类及C类商品要大,我们需要将这些商品陈列面扩大及陈列展示在黄金陈列位置并非所有商品相同饰面数平均陈列,而是对A类商品进行重点管理,同时陈列饰面数需要依照商品的销售占比来确定。
接下来我们就可以通过ABC分析法去确定陈列数量
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04