京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据引发数据库行业变革
数据库市场成形于上个世纪80年代。近年来随着云计算、大数据应用的兴起,面对爆发式增长的海量数据,传统数据库已难以应对;面对以视频、图片、文字等非结构化数据为主的大数据,传统商业智能系统和数据分析软件缺少有效地分析工具和方法。大数据引发数据库行业变革,国产数据库迎来三十年不遇的战略机遇期。
在激烈的市场竞争中,国产数据库厂商逐渐壮大起来,目前已经形成了以南大通用为首的国产数据库四大品牌。在新型数据库领域,国产技术已经与国外品牌站在了同一起跑线上。
2013年4月,相关媒体发布《中国数据库市场发展趋势报告》。通过深入分析大数据对于数据库市场的冲击,剖析OldSQL、NewSQL和NoSQL三类数据库技术的优缺点,梳理了中国数据库市场的发展特点、发展趋势,发展机遇、市场竞争环境等,从而为国产数据库厂商应对大数据时代的战略发展规划提供了重要的参考和建议。
一、大数据时代企业级数据处理需求
大数据可以分为行业大数据和互联网大数据两个类型,其中行业大数据又可分为四类:经营类、管理类、监管类和专业类。从占比上看,目前我们所说的大数据,有80%是来源于互联网大数据;从体量上看,行业大数据的体量与互联网大数据的体量相当,两者基本位于同一数量级上;从价值上看,行业大数据的价值密度高于互联网数据。
在未来3到5年,行业应用数据分析将成为大数据应用主战场。真正能够利用好大数据、并将其价值转化成生产力的企业必将具备强劲有力的竞争优势,从而成为行业的领导者。目前来看,政府、金融、电信、零售等将是最先使用大数据工具的行业。
表 1 大数据时代企业级数据处理需求
项目 业务特征 应用趋势
政府 公安 公安机关部门、警种繁多,造就了数据的海量化和类型的多样化。 利用对大数据的分析、挖掘,实现对人像,指纹比对,卡口等数据融合处理,从而为领导指挥决策,各情报分析提供支撑。
信息
安全 宏观上的网络安全态势感知和微观上的发现安全威胁,需要对海量日志信息进行定期的关系分析。 通过自动化分析处理与深度挖掘,将之前很多时候亡羊补牢式的事中、事后处理,转向事前自动评估预测、应急处理,让安全防护主动起来。
气象 数据包括温度和气压读数、风速、图像以及来自卫星、气球、船只和飞机的观测结果,而这些数据将以每天TB级的量级增长。 通过合理的梳理数据流,可提供更有价值、更加及时的气象信息,同时更好、更精确和更具预测性地进行环境预测。
交通
管理 系统性,数据量大;复杂性,涉及多方面数据;动态性,信息实时处理要求高。 对各种交通数据进行大量采集和系统分析,实现对道路和交通状况的全天候和全天时感知。
税务 税收信息包含种类繁多,人员涉及广泛。 通过税收数据的集中处理,真实、实时、全面地掌握税收工作各项数据和整体情况。
社保
管理 社保“一卡通”将产生的海量数据信息,并且呈现出几何式增长态势。 对于海量信息进行合理分类、科学分析、有效预测。
电信行业 数据量激增,保存时间长;受众群体大,市场饱和度高。 数据流量暴增,向智能化管道转型;规避同质化竞争,寻找差异化经营“蓝海”。
金融行业 设备先进,功能齐全;自动化程度高,安全保密性强。 金融智能决策、金融服务创新。
零售行业 零售行业需要及时响应客户需求,实现精准营销。 个性化精准营销要求零售企业对消费者消费行为、天气等进行大数据分析,结合客户的购物习惯,提供一致的个性化购物体验,以提高客户忠诚度。
二、大数据引发数据库行业技术变革
大数据引发数据库行业架构创新。美国著名数据库科学家迈克尔•斯通布雷克(Michael Stonebraker)指出,行业技术的发展趋势是由一种架构支持所有应用转变为用多种架构支持多类应用。在大数据和云计算的背景下,这一理论导致了数据库市场的大裂变:数据库市场分化为三大阵营,包括OldSQL(传统数据库)、NewSQL(新型数据库)和NoSQL(非关系型数据库)。为了提升性能,NewSQL阵营普遍采用了列存储技术;NoSQL阵营普遍采用了KV技术。三个阵营都不同程度地采用了分布式计算、分布式文件系统、内存计算技术,并积极地使用新的硬件技术,如大内存、Flash、SSD和高速网络连接(万兆交换机和Infiniband)等。
三者在数据管理能力、数据的价值密度以数据处理的实时性等方面各有所长,从而势必造成在未来的数据库软件市场上出现结构混搭、多种技术并存,并且和谐相处的局面。然而,由于受数据管理能力所限,伴随数据量逐年增加,OldSQL生命活力受到极大影响,未来将呈现不断弱化的趋势;在NoSQL领域,虽然其在数据管理能力方面具备先天优势,但是因为NoSQL处理的大多为互联网数据,其价值密度较低,因此其市场活力呈现较为稳定的态势;在NewSQL领域,其数据管理能力高于OldSQL,又面向数据价值密度较高的行业大数据,促使其具备较高的市场活力,虽然其进入市场时间较晚,但是未来其市场活力必将超越OldSQL、NoSQL,成为在数据处理技术领域新的“王者”。
面对大数据,传统的行式存储数据库已经尽显颓态,数据库软件巨头也通过加强研发、收购等方式加强自己在大数据领域的影响力,纷纷推出自己的面向大数据库的新型数据库解决方案。而在新型数据库中,以列式存储为主的数据库如Sybase IQ,GBase 8a,Vertica等表现优异,成为NewSQL的典型代表。
三、应对大数据,国产数据库迎来新机遇
由于国家信息化建设的需求,电子政务正处于深化应用阶段,对数据的开发利用将成为新的方向,这样就给国产数据库发展带来非常好的市场机会。特别是由于政府、能源等关键行业比较注重信息安全保障,因此国产数据库软件获得政府青睐。
经过十多年的刻苦发展,国产数据库在技术研发方面取得了长足进步,产品日趋成熟。与国外数据库软件相比,国产数据库企业借助安全、本土化优势已在政府和行业领域击败国外竞争对手。作为国产数据库代表,南大通用以新型数据库研发作为其战略核心,成为第一家支持列式存储和MPP架构的国产数据库厂商。其GBASE系列数据库已经成功应用到电信、金融、政务等多个行业和领域。在新型数据库领域已经具备与世界主流厂商在大数据分析类应用中直接竞争的能力,跃升成为国内新型数据库领域的前三强厂商。
大数据给国产数据库厂商带来了“天时、地利、人和”三者同时齐备的三十年不遇的战略机遇期。国内数据库厂商应当充分认识到未来三年,将是决定国产数据库在大数据领域成败的关键时期。如果国内企业能抓住这一机遇,在技术、商业模式上主动突破,形成自己的优势,在某些行业率先开辟出应用示范案例,那么在大数据时代,国产数据库厂商就能有效应对国际大厂商的强势压力和竞争,在市场上取得突破性的发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19