京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师这个职业是你的菜吗?
宽松的格子衫、酒瓶底一样的眼镜,这或许是大多数人对程序员这一群体的群体画像,但在大数据发展如此之快的今天,数据分析师已经成为一个新兴职业。这个听着就高大上的职业,你有没有想过也可以算得上是程序员的一个分支,他们的就业现状如何?
数据分析师
与传统商业大为不同的是,随着互联网的快速发展,大数据时代已经悄然降临。数据分析师这个新兴职业需求量逐渐增多,大众对于数据分析的认识加深,数据分析3.0时代已经来临。
数据到底有多大 数据分析又有何用
都说大数据时代已经来临,但是大数据究竟有多大呢?这些数据从何而来,又有什么价值,或者能辅助那些决策?
据统计,在互联网的世界里,每分钟Facebook平均有600次的访问量,并有新增用户28万;Amazon每分钟销售高达8.3万美元;全球IP网一分钟能够传输639TB的数据;你需要花费5年的时间才能看完互联网上一秒钟传输的视频。
如何成为数据分析师?
值得注意的是,我们都已经认识到这个世界的数据量之大超乎我们的想象,但是无论数据的形态和体量发生了任何变化,缺乏数据分析的数据本身是没有商业价值的。而数据分析师的作用就是将实际业务、商业目的和运营目标相结合,今儿为这个社会和个体创造经济价值。
我国还缺少多少分析师
如果说从2003年开始,我国数据分析行业开始觉醒,那么13年来,我国的数据分析行业已经初具规模。但是数据分析师作为一种人才,其培养需要一定的时间,所以在我国的大数据人才市场上,数据分析师仍然属于稀缺品种。
金融成中国大数据市场行业营收结构重点
在已统计的数据相关企业中,北京、上海、广东(主要是深圳)和浙江(主要是杭州)的占比达92%,其中北京处于遥遥领先的地位,全国占比接近60%;在北京的大数据企业或产品中,海淀区又占有绝对的优势地位,占北京大数据企业的63%,在全国来看占比在三分之一左右。
根据埃森哲一份报告显示,在发展中国家,分析类专业服务和制药业将创造出最多的数据科学相关就业机会。在未来五年,互联网、金融及医疗行业将会创造大多数的数据科学相关职位。
据Gartner预测,在2016年,大数据将在全球创建440万个工作岗位,其中有190万个工作岗位在美国。同时,根据对阿里巴巴、星图数据、钱方银通、和堂金融等公司的访谈及调研,并根据这些数据做出的预测显示,到2018年,我国数据分析师的职位空缺将达到近40000人,而且各行各业均会对数据科学相关岗位产生很大的需求。
多金的数据分析师是你的菜吗?
作为收入不菲的数据分析师行业,让很多人想一试身手。那么,成为一名数据分析师需要哪些技能呢?
成为一名专业的数据分析师首先要掌握的基础课程包括:大数据的Java基础、Python网络程序开发、大数据的矩阵计算基础、Scala语言入门、深入JVM内核——原理、诊断与优化和深入理解Linux内核、搜索引擎构建与爬虫技术、高并发大数据平台架构设计、Hadoop数据分析平台、Mahout机器学习平台、Spark大数据平台、MongoDB架构、管理与应用等。
数据分析师是你的菜吗?
预计很多人看到上面这几项基础课程就已经觉得难于登天,也理解了为什么说数据分析是程序员的一个分支;如果你想做BI分析,还要掌握数据挖掘方法、传统统计方法和数据可视化等技术能力。
所以数据分析师不仅听起来是个高大上的职业,做起来也需要高大上的技能;所以,打算一脚踏入数据分析师行业的年轻人请注意,此门深似海,换句话说,你需要投入大量精力,而且需要学习的东西太多,导致数据分析是的回报率相对较低。
数据分析师在我国属于新兴职业,这一方面意味着缺乏大量这方面的人才;但另一方面也意味着行业规模小,行业规章制度与基础设施还不完善。如此看来,数据分析师这个职业,是你的菜吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13