
这10家创业公司将大数据分析推向全新高度
有结构、无结构数据的崛起创造了一个蓬勃发展的市场,其价值预计将在 2018 年达到415亿美元左右。大数据市场的快速增长造就了大量的供应商的出现,他们都希望能从中获利。在众多竞争市场地位的供应商中,有许多旨在帮助组织收集和分析数据的创业公司。CBR(计算机商业评论) 从中选出了10个值得被关注的公司。
1. Confluent
Confluent 公司成立于 2014,已经获得超过 3000 万美元的投资,这些投资来自于 LinkedIn、Index Ventures、Benchmark Capital 和 The Data Collective 等投资者。
该公司由 Apache Kafka 的开发者们创立(Apache Kafka是一个实时通讯和大数据流引擎)。其最初创立于 LinkedIn 内部,而后归入 Apache 软件基金会旗下,最后分离出来作为一个独立的公司。Confluent 本质上是 Apache Kafka 软件的商业提供者和技术支持者。当还在 LinkedIn 的时候,Confluent 已经开始帮助 LinkedIn 全面检测公司里发生的一切,作为一个实时的 Kafka feed,为 Hadoop、Search、Newsfeed 等数据系统填入数据。
Confluent 专注于构建一个数据流平台,从而帮助企业获得实时的企业数据。Confluent 提供的编程语言包括 Java、C 语言和C++,通过其 REST 服务器,可以使用任何网络连接工具来生成信息、实现通讯。
2. H2O.ai
H2O.ai (曾用名 0xdata)公司成立于 2011,已经获得了 3360 万美元的投资,这些投资来自于 Nexus Venture Partners、Paxion Capital Partners 和 Transamerica Ventures 等投资者。
该公司由 Platfora 和 Cliff Click 的联合创始人 SriSatish Ambati 创立,他还是 Java 虚拟机的领头开发者。公司创立之初的想法是,让开发人员和数据学家更简单轻松地应用机器学习算法。
该公司提供一个开源的机器学习平台,其设计是为了在使用 Web UI 或者不同的编程环境(如 R、java、python、Scala 、JSON)的同时,也能使用 Hadoop 和 Spark。该平台支持的数据库和文件类型包括微软 Excel、R Studio、和Tableau。H2O可以帮助开发模型培养机器学习能力,从而可以对数据进行解析、获取和模拟。
最基础的是,该技术有助于快速创建和应用机器学习算法。
3. AtScale
Atscale 成立于 2013,至今已募集了900万美元的投资,这些投资来自于 AME Cloud Ventures、Storm Ventures 和 UMC Capital 等投资者。该公司的想法是使用熟悉的商业智能(BI)工具和界面(如 SQL、Tableau)和 Hadoop这样的技术解决问题,也就是,它们在商业用户、可视化工具和基础 Hadoop 平台间建立桥梁。
其目标是帮助企业对现有数据进行数据分析,而且不需要将数据移入专门的分析工具,因为移入专门的分析工具有时间和金钱成本。
Atscale 由 Hadoop 和 BI 的前员工创立,他们具备把 Hadoop 集群转变成规模化 OLAP 服务器的能力。另外,Atscale 支持 BI 工具,可以和 SQL 或 MDX 进行信息交流。
4. Interana
把提供事件数据的行为分析作为自己招牌的 Interana 公司帮助企业做数据主导的决策。该公司成立于 2013 年,由首席执行官 Ann Johnson 和首席技术官 Bobby Johnson 联合创办,目前完成了 2820 万美元的融资,其中在由 Index Ventures 领投的 B 轮融资中获得了 2000 万美元。
Interana 专注于提供互动分析,帮助企业了解他们客户的行为和产品使用情况。该公司使用一个专有的数据库,能让它快速处理数十亿的事件。例如像 Tinder 这样的公司用它来进行网络连接故障检修,测量社交媒体的有效性,以及监测用户的刷机方式。Tinder 在全公司广泛使用 Interana,从而改善自己的服务和操作。
5. Tamr
Tamr 结合了机器学习软件和数据科学。该公司由 Andy Palmer、Mike Stonebrake 等人共同创立,他们都是数据研发的老兵。
Tamr 使用一个可扩展的数据统一平台,通过机器学习和人工输入的方式,帮助客户使用被孤立在不同的数据库、电子表格、记录数据、和合作伙伴资源里的数据。
Tamr 一种获得 4240 万美元融资,其中在最近的 B 轮融资中得到 2520 万美元。主要投资者包括 Hewlett-Packard Ventures、Thomson Reuters 和 MassMutual Ventures。简单来说,Tamr 是一个数据清理的创业公司,旨在清理来自不同资源的数据,从而让数据更容易被使用。
6. Wavefront
Wavefront 成立于 2013 年,总部设在加利福尼亚的帕洛奥图,至今已获得 2050 万美元投资,这些投资来自于 Sequoia Capital、Sutter Hill Ventures 和 Webb Investment Network 等投资者。
该公司提供一个实时的分析平台,可以把一个 IT 公司所有系统中的数据抽离出来,通过识别和诊断以预防崩溃。Wavefront 使用了一种查询语言,从而可以对时间序列数据进行处理,它也允许用户通过下拉菜单、过滤器和自动生成表格来手工查询。该技术最初是在 Google 和 Twitter 内部开发,现在正在被 Box、First Data 和 Workday 等公司使用。
7. BlueTalon
BlueTalon 是另一家成立于 2013、总部在加利福尼亚的公司,只不过它位于 Redwood。该公司至今已筹集了 1140 万美元的投资,这些投资来自于 Data Collective、Signia、Venture Partners 和 Bloomberg Data 等投资者。
BlueTalon 为大数据提供数据中心安全保障,例如 Hadoop、SQL,它主要是对 Hadoop 分布式文件系统使用访问控制和动态掩蔽实现这一点的。
除了在 Hadoop 上有效,它也能在微软 Azure 和亚马逊网络服务上工作。据 BlueTalon 所言,它允许用户自定义数据配置设定,这意味着企业用户和开发人员可以只访问他们所需要的数据。该公司还提供审核服务,让用户知道什么人在什么时候,因为什么原因访问了什么数据。
8. Cazena
Cazena 虽然只是成立于 2014,但已经从诸如 North Bridge Venture Partners、Growth Equity、Andreessen Horowitz 和 Formation 8 等投资那里筹集了 2800 万美元。在 2015 七月重新回归之后,Cazena 带来了一项叫做 Big Data-as-a-Service 的大数据服务。据该公司表示,将大数据处理转移到云端的过程只需要轻轻点击三次。
该公司专注于通过 Data-As-A-Service 大数据服务实现在加密的云端进行大数据处理。它的产品分为 Data Lake、Data Mart 和 Sandbox 三个版本。
为了智能工作,该公司供应和优化了云端基础设施,其中也包含 Hadoop、Spark、MPP SQL、Search 这样的数据技术。
另外,Cazena 提供端到端的数据加密技术,企业掌控着静态和动态秘钥。
9. DataTorrent
DataTorrent 成立于 2012 年,是这 10 家公司中的老创业公司之一。到目前为止它已募集到 2380 万美元,其中包括由 Singtel Innov8 领投的1500 万美元的 B 轮融资 。
该公司专注于实时大数据分析技术,其技术基础是一个开源的数据流和处理引擎,该公司表示此引擎在 Hadoop 集群中,每秒可以处理数十亿的事件。
DataTorrent 支持摄入的数据来源有 Kafka、AWS S3n、HDFS、NFS、JMS等等。
DataTorrent RTS Core 是一个开源的企业级统一的数据流和批量处理引擎。它提供了一整套系统服务,可以帮助开发人员专注于 Business Logic。该公司还提供一个完整的 Hadoop 集成应用的管理控制台,为熄灯管理提供图形界面。
10. Databricks
Apache Spark 这项技术如今已经在数据分析界非常流行。而这家公司正是由 Apache Spark 的开发者们在加州大学伯克利分校的 AMPLab 实验室创立。Databricks 是 Spark 的商业服务和支持提供商。
这几位开发者想要借助 Spark 在整个社区和众多厂商(IBM)那里的影响成立 Databricks 。 Databricks 本身也为交互分析、可视化、管理数据,以及协作与集成提供工具。
在 2013 年成立后,它开始用 Spark 帮助客户进行基于云端的大数据处理。Databricks 已经在两轮融资里筹集到 4700 万美元,其中 2014 年 6 月 B 轮融资获得 3300 万美元。
该公司与 Spark 的发展紧密联系在一起,而在最近也公布了三个特征变化。其中一个是开始执行 Tungsten 项目的下一阶段从而加速 Spark,他们是通过解决 Java 的记忆处理限制、改善实时数据流系统、将其使用的多种数据结构 API 整合为一个 API 实现加速目的的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18