京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据可视化——用户行为序列图
作为一名网站的用户研究工作人员,我曾经碰到过以下问题:
深知服务器日志是一座金矿,但不知道该从哪里开始分析?
辛辛苦苦盯着电脑一天,看了1000+条日志,越看越晕,看不出规律,找不到方向…
在众多日志中,发现了一个异常动作,可是,这只是一个用户不小心点错了呢?还是由于设计导致的大量误操作呢?
经过一段时间的探索,发现将日志可视化,制作行为序列图,是一个非常直观有效的梳理思路&发现问题的方法,在此分享给大家~
1.用户行为序列:
也可以叫做“基于时间序列的用户行为”,是某一时间段内,按照时间先后顺序记录的人从事某种活动的每一步行为。
在网站,一段时间内,一个用户从进入网站到离开网站过程中的每一步行为的记录,被我们记做一条用户行为序列。
如下图,就是一条用户行为序列。
这条用户行为包含12个步长,依次进行了搜索、添词、预估等动作。
2.了解了用户行为序列,我们再来看一下行为序列图长啥样子?
刚才的那条共计12步的用户行为序列,转化为行为序列图,就是这个样子滴↓
(*其中,对每个动作都进行了数字编码&颜色标记,如:动作“search”被编码为“16”,并标记为“透明度为20%的红色”。具体操作方法请参考文章第四部分。)
是不是瞬间变得非常简单直观~
如果有100条用户行为序列,那么这幅行为序列图是这个样子的↓,大数据尽收眼底,就是这种赶脚哦~
直观~直观~还是直观
如果非要说出来的话,我总结了一下,对我们研究日志有如下帮助:
1.宏观全览大数据
2.根据需求灵活标注,便于观察规律
3.定位问题,通过颜色区分,一目了然
4.与统计数据结合,解释问题有数有据
5.大家都能看的懂
。。。(暂时想不出来了,欢迎补充)
第一步:获取数据
数据来源:通过数据后台,或请程序猿大哥帮忙跑出的日志,格式不限。
比如,它可以是这个样子的:
第二步:清洗&整理数据
1.清洗数据:
在数据提取阶段,偶尔会出现空白值的情况,建议把包含空白值的用户剔除掉,以免干扰以后的数据分析。
2.整理数据:
拿到的数据格式各异,需要进行整理才能符合我们做可视化的格式。我们需要将数据整理成这样的格式。
在EXCEL中,对动作进行数字编码,并使用数据透视表,将数据进行整理后变成如下形式:OK,数据已经整理成了我们想要的形式。
第三步:对不同动作进行颜色标记,以便通过色彩直观的了解用户行为规律和特点。
动作标记,需要根据需求再进行。对于特别关注的动作可以进行重点标记。如没有思路,希望通过看图找出一些规律,可以常识根据不同动作类型标颜色,如点击、翻页、输入等;也可以根据不同页面进行标记,如首页动作、结果列表页动作、详情页动作等,也可以根据功能模块进行标记,如查找功能,查看功能等。
*对于相似动作或者某一类型动作,可以使用同一色系的渐变色标注,这样可以使非常多的动作类型看起来更简洁,也更便于观察分析。
在excel中可以用“条件格式”进行标记,如下图:
接下来,就是对这些行为按照不同维度进行标记&排序。你会发现一些规律、一些异常慢慢开始浮现~
案例1:用户步长的直观分析
• 项目背景:
新产品上线,用户平均步长数是:11步,各模块点击率也OK,但从客户那里得到的反馈褒贬不一。PM希望了解一下问题出在哪里?
• 研究方法:
通过日志,对线上用户实际操作行为进行分析,绘制了用户行为序列图。
• 发现问题:
仅执行第一个关键动作就离开的用户占到将近一半!人们在反复尝试后,都不满意!所以,结果并不像平均步长等于11,那么令人欣慰!
案例2:用户页面切换的真实情况
项目背景:
拿到一批用户的行为日志,希望可以从中探究一些规律,同时发现现有流程中的问题
研究方法:
以页面为维度,对动作进行标记,绘制用户行为序列图。
发现问题:
挑选商品页的动作数(标记为绿色)少于预估&删除商品页的动作数(标记为黄色)。但我们希望用户精挑细选,然后快速决策,可见用户并不是按照我们的预期使用产品,里面肯定有一些体验问题,值得我们深入分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23