京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析流程这么长,产品经理如何一人搞定?
我2002年入行,那个时候还没有“产品经理”这个词,我的主要工作是为业务部门跑数据并且制作报表, 就是传说中“跑数据”、“做报表”的那个苦逼数据仓库工程师。
2007年之前我一直在为制造型企业建数据仓库,直到去了美国的之后,才开始进入到互联网,服务过两家公司,Linkedin 4年和 eBay 3年多。天天和产品经理、数据分析师在一起,帮助他们准备需要的数据、分析产品和用户,最后把分析的结果做到产品里面去。走上了数据采集 – 处理 – 清洗 – 展现 – 分析 – 数据产品的道路。
一个互联网公司要做好 Growth,就要做好产品体验。想要做好产品体验,产品经理第一需要的就是数据分析支持,有了数据才能开始Growth Hacker…此处省去10000字关于 Growth Hacker。
对于产品经理而言,他们关心的是什么呢?产品经理对网站或者是 APP 的 UI 、UX 是最熟悉的,因为他们参与了其中的设计:用户应该怎么交互,有哪些交互上面不方便的地方,每一级菜单 用户交互的流程,交互上的死角和边界;然后是设计,UI 是不是够简洁,美观,吸引人?哪些链接需要加强用户关注度,哪些链接需要减低用户的关注度。总而言之,都是为了用户体验,好的用户体验才能带来用户活跃,提高增长。
比如网页端( APP 端同理):
一个合格的数据分析师要能够制作可视化的报表,能够用不同的图形表达分析的结果。比如下面的可视化报表:
分析师构建报表的数据从哪里来呢?在数据库。
数据库里面有成百上千种表,一个合格的数据分析师首要的是知道数据在哪里?存在哪些表里面:
“哪里有页面浏览的表,哪里有搜索的表,哪里有广告的展现,点击的表,哪里有手机用户事件的表,哪里有用户属性的表,这些表每个字段对应了哪些维度和指标,哪里有宏观的已经计算好的指标,哪里有微观的详细的用户事件,还有很多过滤条件等等。”
对于一个刚入职的分析师,即使是有专人带的情况下,也是需要一定的时间才能成长的,不然很可能提供了错误的数据, 导致了错误的决策。
如下图是数据分析师们熟悉的数据库结构,可以帮助他们迅速的找到表的定义和字段的定义:
数据工程师设计并构建了上面的数据库模型,同时他们也要负责源源不断的把数据插入到这些数据库的表中,这些数据可以存在数据库里面,也可以存在 Hadoop 的数据集群中。
可是数据库里面存了所有我们能够支持数据分析师的数据吗? 当分析师在数据库里面找不到数据的时候, 就需要数据工程师需要从各种地方重新调取(此处省略关于实时数据流,Hadoop 集群,ETL,数据聚合等等关于技术的10000字)。
总之如果要得到没有事先收集的用户行为事件数据,就要在前端的代码里面埋事件代码,也就是在用户事件产生的源头埋点,才能在服务端得到相应的日志数据。
在技术上 Linkedin 为互联网日志做出了贡献,开源了 Kafka。什么是 kafka?就是可以非常实时的接受客户端发过来的实时事件数据并生成日志数据,然后发送到后端服务器上。比如腾讯,今日头条,新浪等等互联网公司都用 Kafka 收集日志的。
日志是这个样子的:
以上的这些都是数据,不同的人看到的角度是不同的。如下图:
从工程的角度出发,数据处理的顺序是这样的:
第一步:先埋点
第二步:收集日志
第三步:建立数据库
第四步:分析数据
第五步:得出产品经理要的分析结果
看起来这个链条很长,但是GrowingIO可以把它缩短,如何缩短?在一开始就从产品经理的角度来看这个问题。
从产品经理的角度出发,数据处理的顺序是这样的:
第一步:产品经理直接圈选,看数据结果。
在保存了用户事件之后,还可以自由的创造看板。如下图
产品经理和数据分析师可以在很短的时间能创建出看板,从事件的定义到产生分析结果,只要短短几秒钟,而且还追溯了过去7天的历史数据。
不仅仅如此,GrowingIO 还提供用户分群、用户细查、事件留存和数据下载等高级功能。
我们现在通过云端软件服务形式,制作了一个简单容易上手的系统,可以让初创公司快速地,低成本地获得只有大公司才玩得起的实时大数据分析系统。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27