京公网安备 11010802034615号
经营许可证编号:京B2-20210330
教育领域数据管理之数据安全
一直以来,教育都是贯穿于社会发展中的一项基础工程,更是年轻力量的培养基地。信息时代,教育行业也发生了翻天覆地的变化,在教育系统、教育设备、教育环境等纷纷融入信息化元素的同时,也把数据安全的威胁带入到了这片“净土”之上。
随着教育信息化的深入,越来越多纸张上的数据向硬盘存储和网络变革,无论学籍档案、成绩管理、教职员工信息,还是学术文献资料,这些教育关键数据都在向IT系统转移。大到国家级别的教育资源和管理公共服务平台,小到院、校级别的各种数字教学平台,都汇聚存储了教育管理、教学支持领域的海量知识和用户信息。可以说,教育行业是一个包含巨大信息流的行业,有效利用这些数据信息将能够进一步指导教学,实现国家对教学资源的科学管理。而且,越是高等级、研究深入的教育机构产生的信息越是机密,也越有价值。但也正因此,学校也一直是数据泄露最频繁的地方,尤其是强调自由开放的学校网络,经常成为黑客攻击的目标。
值得关注的是,大部分信息安全事件经过事后调查发现,主要的数据泄露不是来自于互联网攻破,而绝大多数皆因内部监控疏漏或内部人员有意或无意为之,如内部人员故意泄露、合作机构因拥有一定权限侵占信息、计算机遗失导致的“被动”泄密、使用社交网络无意将敏感数据泄露出来,等等。面对全部转化为虚拟符号的数据,教育机构必须预见并防止这些电子机密信息遭到有意或无意的误用、泄漏或盗窃,承担起保护教师、学生信息和学术资料等数据安全的责任,防止这些数据泄露可以说就是保护国家发展的未来。
但是大多数教育机构对数据泄露问题理解不深、准备不足,他们与企业一样,都长期将80% 努力及预算全放在20%的网络攻击防护上,而在内控上却只有少数投入,虽然采取封掉USB接口、限制上网、制定信息访问权限等诸多手段,但依然有大量的教育敏感数据、用户信息通过电子邮件、即时通讯工具、U盘等泄密到教育机构外部。独立研究机构Ponemon每年都会对全球的数据安全智能现状进行调研,在2015年研究报告中显示:仅有21%的调查对象机构能够随时检测数据泄露,超过半数(55%)承认在过去一年发生数据泄露事件时,本可以通过采用适当的流程及智能技术得以避免。
教育行业的数据安全防护不容忽视,但面对愈演愈烈的数据泄漏问题,传统的防火墙、反病毒、入侵检测、物理隔离等信息安全防护措施已难以独立应对,使用对于数据有本源防护的数据加密技术和数据脱敏技术则成为众多防护手段中最好的选择。下面重点介绍的是欧美教育机构广泛采用的数据脱敏技术。
信息泄露的方式千变万化,每种都有不同的管控方式,基于数据脱敏技术的数据安全保护方案,在最近几年开始被越来越多的企业接受,它能够让学校在使用重要数据的同时,将数据泄露和损失的风险降到最低。数据脱敏也被称为数据混淆、数据保密、数据消毒、数据扰频、数据匿名化和数据认证,其目是通过从客户端隐藏敏感数据,以防止这些数据被滥用,帮助组织提高安全性和保密等级,以及由管理/审计机关所要求的隐私标准。
数据脱敏技术可分为SDM(静态数据脱敏)和DDM(动态数据脱敏)。其中,静态数据脱敏用于处理静止的数据,通过在来源处创建可在内部和外部安全共享的真实但无法识别归属的数据,例如用相似的字符替代一些字段、用屏蔽字符“ XX“替代字符、用虚拟的姓氏替代真正的姓氏,以及在数据库数列中对数据进行重组等,防止机密数据(如:学籍号、姓名、地址和电话号码)意外泄露。而动态数据脱敏可随时对敏感字段进行脱敏,数据使用者可以共享和移动数据,同时确保只有认证用户才能查看到学生基本资料、家长通讯录、学生成绩等真实值,防止未授权用户访问这些敏感信息,并在数据分析和研究中使用这些数据而不违反数据隐私法规。
数据安全技术供应商Informatica对数据泄露问题做了多年详细调查与研究,在数据读取和使用两方面使用动态或静态的数据脱敏手段来保证数据隐私,其解决方案是在数据库前建立一道防火墙,在保存数据原始特征的同时改变它的数值,从而保护敏感数据免于未经授权的访问,同时又可以进行相关的数据处理。
当前,越来越多的领域在倡导数据开放、公开,如天气、GPS、交通、医疗健康……,当然这些数据的开放利用也在某种程度上提升了民生福祉,但更多的人是想尽办法保护好自己那些不愿意向外人道的信息。比如家长对学校泄露学生信息和搜集孩子们记录数据的企业警铃大作,即使目的是为了帮助孩子更好地学习。在这种情况下,教育机构要做的是转换思维,采取一种新的方式,在努力压制所有数据使其成为秘密,以及完全公开个人信息之间达成平衡,而数据脱敏技术让那些手握海量教育、教学数据的机构,在确保发掘数据价值的同时,不会碰触到那条敏感的安全红线。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21