京公网安备 11010802034615号
经营许可证编号:京B2-20210330
分类模型是数据挖掘中应用非常广泛的算法之一,常用的分类算法有Logistic模型、决策树、随机森林、神经网络、Boosting等。针对同一个数据集,可以有这么多的算法进行分析,那如何评估什么样的模型比较合理呢?本文就讲讲常用的模型验证武器,主要包括混淆矩阵、ROC曲线、提升度、增益法和KS统计量。
一、混淆矩阵
混淆矩阵就是如下图所示的那样,也是最简单的一种模型验证方法:
通过混淆矩阵可以算出模型预测精度((a+d)/(a+b+c+d))、正例覆盖率(b/(c+d))、负例覆盖率(a/(a+b))等。通过这么些指标综合考虑模型的预测准确率。
二、ROC曲线
在讲解ROC曲线之前,我们先看看几个定义:
Sensitivity:正确预测到的正例数/实际正例总数,即b/(c+d)
Specificity:正确预测到的负例数/实际负例总数,即a/(a+b)
ROC曲线就是根据这两个指标值绘制出来的,其中x轴为1-Specificity,y轴为Sensitivity。
通过比较ROC曲线与45°直线可以直观的反映模型的好坏,但并不能从定量的角度反馈模型好是好到什么程度或模型差是差到什么程度。那么就引申出了AUC的概念,即ROC曲线下的面积。当曲线偏离45°直线越远,则AUC越大,模型相应就会越好。一般认为AUC在0.75以上,模型就可以接受了。
三、提升度Lift
在讲解提升度曲线之前,我们先看看几个定义:
Pi:测试集中正例的比例,即(c+d)/(a+b+c+d)
Ptp:正确预测到的正例个数占总观测值的比例,即d/a+b+c+d=Pi1* Sensitivity
Pfp:把负例错误地预测成正例的个数占总数的比例,即b/a+b+c+d=(1-Pi1)*(1- Specificity)
Depth:预测成正例的比例,即b+d/a+b+c+d=Ptp+Pfp
PV_Plus:正确预测到的正例数/预测正例总数,即d/(b+d)=Ptp/depth
提升度Lift=(d/b+d)/(c+d/a+b+c+d)=PV_plus/Pi1
Lift曲线就是根据Depth和Lift两个指标绘制而成,它反映了预测正例的正真准确率。
四、增益法Gain
其实增益法Gain与提升度是一个事物的两种说法,从公式中就可以看出:
Gain=d/(b+d)=PV_plus
Gain与提升度相比并没有除以Pi值。
五、K-S统计量
统计学中,对于单样本的K-S检验就是利用样本数据来推断其是否服从某种分布,对于两样本的K-S检验主要推测的是两个样本是否具有相同的分布,对于模型的评估,希望正例的累积概率分布与负例的累积概率分布存在显著差异。
所以我们使用K-S统计量刻画模型的优劣,即使正例与负例的累积概率差达到最大。这是一个定量的判断规则,如下图所示,为传统的评价准则
:
通常要求模型KS值在0.4以上。
废话不多说,下面我们看看如何使用R语言实现这些评估模型的方法。
实例操作:
```{r}
#读取数据
dmagecr <- read.table(file = file.choose(), head = TRUE, sep = '')
#数据结构
str(dmagecr)
```
其中,二分变量good_bad为目标变量,Logistic模型默认将good水平作为感兴趣的水平,很显然对于客户是否为优质客户的问题,这里选择good作为关注对象是错误的,下面指定bad水平为兴趣水平。
```{r}
#指定感兴趣的水平为bad
dmagecr$good_bad <- factor(dmagecr$good_bad, levels = c('good','bad'),ordered = TRUE)
#创建训练集和测试集
set.seed(1234)
index <- sample(c(1,2), size = nrow(dmagecr), replace = TRUE, prob = c(0.7,0.3))
train <- dmagecr[index == 1,]
test <- dmagecr[index == 2,]
#构建Logistic模型
model <- glm(formula = good_bad ~ checking+history+duration+savings+property, family = binomial(link = "logit"), data = train)
#模型结果查看
summary(model)
```
从上图的结果可知,模型的预测变量均为显著,即认为这些变量是模型的重要变量。光有模型的预测变量显著还不够,还需要检测模型是否显著:
```{r}
#模型的显著性检验
anova(object = model, test = 'Chisq')
```
从第一个变量到最后一个变量,逐步加入模型后,模型的偏差检验均为显著,即认为整个模型是通过检验的。下面我们再看看模型的拟合优度如何,即模型的预测与实际情况是否吻合或相近,这里使用H-L检验:
```{r}
#模型的拟合优度检验--HL检验
library(sjmisc)
HL_test <- hoslem_gof(x = model)
HL_test
```
H-L的P值显著大于0.05,即接受实际值与预测值相吻合的原假设,再次说明模型是比较理想的。接下来我们就用这个训练集得到的模型来预测测试集:
```{r}
#模型预测
probility <- predict(object = model, newdata = test[,-21], type = 'response')
predict <- ifelse(probility > 0.5, 'bad', 'good')
#转型为因子
predict <- factor(predict, levels = c('good','bad'), order = TRUE)
#模型评估混淆矩阵
Freq <- table(test[,21], predict)
#预测精度
Accuracy <- sum(diag(Freq))/sum(Freq)
Freq;Accuracy
```
从模型的预测精度来看,准确率为74.2%,模型预测并不理想。除了使用混淆矩阵来评估模型,还可以使用ROC曲线下的面积AUC、提升度Lift、增益法Gain和K-S统计量。下面就深入介绍这几种方法:
```{r}
#ROC曲线
library(pROC)
roc_curve <- roc(test[,21],probility)
names(roc_curve)
Specificity <- roc_curve$specificities
Sensitivity <- roc_curve$sensitivities
library(ggplot2)
p <- ggplot(data = NULL, mapping = aes(x= 1-Specificity, y = Sensitivity))
p + geom_line(colour = 'red') +geom_abline(intercept = 0, slope = 1)+ annotate('text', x = 0.4, y = 0.5, label=paste('AUC=',round(roc_curve$auc,2)))+ labs(x = '1-Specificity',y = 'Sensitivity', title = 'ROC Curve')
```
结果显示,AUC为0.79,相比于0.75,模型马马虎虎还能说的过去。
```{r}
#Lift曲线
Pi <- table(test$good_bad)[2]/sum(table(test$good_bad))
Ptp <- Pi*Sensitivity
Pfp <- (1-Pi)*(1-Specificity)
Depth <- Ptp + Pfp
PV_Plus <- Ptp/Depth
Lift <- PV_Plus/Pi
p <- ggplot(data = NULL, mapping = aes(x= Depth, y = Lift))
p + geom_line(colour = 'blue') + labs(x = 'Depth',y = 'Lift', title = 'Lift Curve')
```
提升度一般是这样使用的:如果某项营销活动受成本的限制,又想使营销活动取得非常成功,一般通过Lift曲线进行人员的筛选,即给定某个Lift阈值,反过来确定Depth值。如提升度相比于不作任何模型,使其达到2倍以上的响应,需要设置Depth在前25%以内。同样,我们还可以绘制Gain曲线:
```{r}
#Gain曲线
p <- ggplot(data = NULL, mapping = aes(x= Depth, y = PV_Plus))
p + geom_line(colour = 'blue') + labs(x = 'Depth',y = 'PV_Plus', title = 'Gain Curve')
```
实际上,Lift曲线与Gain曲线长的一模一样,只不过是纵坐标不同而已。
胡江堂的基于SAS模型评估系列文章中没有涉及到K-S统计量的讲解,本文就对其作一个拓展,R中还没有找到直接绘制两个连续变量的K-S曲线统计量函数,故这里自定义绘制曲线所需数据的函数:
```{r}
#准备K-S数据
ks_data <- as.data.frame(cbind(good_bad=test[,21], probility))
good_ks <- ks_data[which(ks_data$good_bad==1),'probility']
bad_ks <- ks_data[which(ks_data$good_bad==2),'probility']
#自定义计算累计分布函数值
KS_Data <- function(x, y){
gaps_x <- seq(min(x), max(x), length=1000)
cauculate_x <- numeric()
for(i in 1:length(gaps_x)){
cauculate_x[i] <- sum(x<=gaps_x[i])/length(x)
}
gaps_x <- sort((gaps_x-min(gaps_x))/(max(gaps_x)-min(gaps_x)))
gaps_y <- seq(min(y), max(y), length=1000)
cauculate_y <- numeric()
for(i in 1:length(gaps_y)){
cauculate_y[i] <- sum(y<=gaps_y[i])/length(y)
}
gaps_y <- sort((gaps_y-min(gaps_y))/(max(gaps_y)-min(gaps_y)))
return(list(df = data.frame(rbind(data.frame(Gaps = gaps_x,Cauculate = cauculate_x,Type = 'Positive'),data.frame(Gaps = gaps_y,Cauculate = cauculate_y,Type = 'Negtive'))), KS = max(abs(cauculate_y-cauculate_x)), x = gaps_y[which.max(abs(cauculate_y-cauculate_x))],y = abs(cauculate_x[which.max(abs(cauculate_y-cauculate_x))]-cauculate_y[which.max(abs(cauculate_y+cauculate_x))])/2))
}
#绘制K-S曲线
ggplot(data = KS_Data(bad_ks,good_ks)$df, mapping = aes(x = Gaps, y = Cauculate, colour = Type)) + geom_line() + theme(legend.position='none') + annotate(geom = 'text', x = KS_Data(bad_ks,good_ks)$x, y = KS_Data(bad_ks,good_ks)$y, label = paste('K-S Value: ', round(KS_Data(bad_ks,good_ks)$KS,2))) + labs(x = 'Probility', y = 'CDF')
上图结果显示,K-S统计量的值为0.43,根据传统的评价准则,也说明该模型还是基本行得通的。
在数据挖掘实际过程中,需要横向的比较多个模型评估结果,还需要纵向的比较同一个模型不同参数调整的评估结果。通过上面所说的这些评估方法,终能够选出一个最理想的模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23