
分类模型是数据挖掘中应用非常广泛的算法之一,常用的分类算法有Logistic模型、决策树、随机森林、神经网络、Boosting等。针对同一个数据集,可以有这么多的算法进行分析,那如何评估什么样的模型比较合理呢?本文就讲讲常用的模型验证武器,主要包括混淆矩阵、ROC曲线、提升度、增益法和KS统计量。
一、混淆矩阵
混淆矩阵就是如下图所示的那样,也是最简单的一种模型验证方法:
通过混淆矩阵可以算出模型预测精度((a+d)/(a+b+c+d))、正例覆盖率(b/(c+d))、负例覆盖率(a/(a+b))等。通过这么些指标综合考虑模型的预测准确率。
二、ROC曲线
在讲解ROC曲线之前,我们先看看几个定义:
Sensitivity:正确预测到的正例数/实际正例总数,即b/(c+d)
Specificity:正确预测到的负例数/实际负例总数,即a/(a+b)
ROC曲线就是根据这两个指标值绘制出来的,其中x轴为1-Specificity,y轴为Sensitivity。
通过比较ROC曲线与45°直线可以直观的反映模型的好坏,但并不能从定量的角度反馈模型好是好到什么程度或模型差是差到什么程度。那么就引申出了AUC的概念,即ROC曲线下的面积。当曲线偏离45°直线越远,则AUC越大,模型相应就会越好。一般认为AUC在0.75以上,模型就可以接受了。
三、提升度Lift
在讲解提升度曲线之前,我们先看看几个定义:
Pi:测试集中正例的比例,即(c+d)/(a+b+c+d)
Ptp:正确预测到的正例个数占总观测值的比例,即d/a+b+c+d=Pi1* Sensitivity
Pfp:把负例错误地预测成正例的个数占总数的比例,即b/a+b+c+d=(1-Pi1)*(1- Specificity)
Depth:预测成正例的比例,即b+d/a+b+c+d=Ptp+Pfp
PV_Plus:正确预测到的正例数/预测正例总数,即d/(b+d)=Ptp/depth
提升度Lift=(d/b+d)/(c+d/a+b+c+d)=PV_plus/Pi1
Lift曲线就是根据Depth和Lift两个指标绘制而成,它反映了预测正例的正真准确率。
四、增益法Gain
其实增益法Gain与提升度是一个事物的两种说法,从公式中就可以看出:
Gain=d/(b+d)=PV_plus
Gain与提升度相比并没有除以Pi值。
五、K-S统计量
统计学中,对于单样本的K-S检验就是利用样本数据来推断其是否服从某种分布,对于两样本的K-S检验主要推测的是两个样本是否具有相同的分布,对于模型的评估,希望正例的累积概率分布与负例的累积概率分布存在显著差异。
所以我们使用K-S统计量刻画模型的优劣,即使正例与负例的累积概率差达到最大。这是一个定量的判断规则,如下图所示,为传统的评价准则
:
通常要求模型KS值在0.4以上。
废话不多说,下面我们看看如何使用R语言实现这些评估模型的方法。
实例操作:
```{r}
#读取数据
dmagecr <- read.table(file = file.choose(), head = TRUE, sep = '')
#数据结构
str(dmagecr)
```
其中,二分变量good_bad为目标变量,Logistic模型默认将good水平作为感兴趣的水平,很显然对于客户是否为优质客户的问题,这里选择good作为关注对象是错误的,下面指定bad水平为兴趣水平。
```{r}
#指定感兴趣的水平为bad
dmagecr$good_bad <- factor(dmagecr$good_bad, levels = c('good','bad'),ordered = TRUE)
#创建训练集和测试集
set.seed(1234)
index <- sample(c(1,2), size = nrow(dmagecr), replace = TRUE, prob = c(0.7,0.3))
train <- dmagecr[index == 1,]
test <- dmagecr[index == 2,]
#构建Logistic模型
model <- glm(formula = good_bad ~ checking+history+duration+savings+property, family = binomial(link = "logit"), data = train)
#模型结果查看
summary(model)
```
从上图的结果可知,模型的预测变量均为显著,即认为这些变量是模型的重要变量。光有模型的预测变量显著还不够,还需要检测模型是否显著:
```{r}
#模型的显著性检验
anova(object = model, test = 'Chisq')
```
从第一个变量到最后一个变量,逐步加入模型后,模型的偏差检验均为显著,即认为整个模型是通过检验的。下面我们再看看模型的拟合优度如何,即模型的预测与实际情况是否吻合或相近,这里使用H-L检验:
```{r}
#模型的拟合优度检验--HL检验
library(sjmisc)
HL_test <- hoslem_gof(x = model)
HL_test
```
H-L的P值显著大于0.05,即接受实际值与预测值相吻合的原假设,再次说明模型是比较理想的。接下来我们就用这个训练集得到的模型来预测测试集:
```{r}
#模型预测
probility <- predict(object = model, newdata = test[,-21], type = 'response')
predict <- ifelse(probility > 0.5, 'bad', 'good')
#转型为因子
predict <- factor(predict, levels = c('good','bad'), order = TRUE)
#模型评估混淆矩阵
Freq <- table(test[,21], predict)
#预测精度
Accuracy <- sum(diag(Freq))/sum(Freq)
Freq;Accuracy
```
从模型的预测精度来看,准确率为74.2%,模型预测并不理想。除了使用混淆矩阵来评估模型,还可以使用ROC曲线下的面积AUC、提升度Lift、增益法Gain和K-S统计量。下面就深入介绍这几种方法:
```{r}
#ROC曲线
library(pROC)
roc_curve <- roc(test[,21],probility)
names(roc_curve)
Specificity <- roc_curve$specificities
Sensitivity <- roc_curve$sensitivities
library(ggplot2)
p <- ggplot(data = NULL, mapping = aes(x= 1-Specificity, y = Sensitivity))
p + geom_line(colour = 'red') +geom_abline(intercept = 0, slope = 1)+ annotate('text', x = 0.4, y = 0.5, label=paste('AUC=',round(roc_curve$auc,2)))+ labs(x = '1-Specificity',y = 'Sensitivity', title = 'ROC Curve')
```
结果显示,AUC为0.79,相比于0.75,模型马马虎虎还能说的过去。
```{r}
#Lift曲线
Pi <- table(test$good_bad)[2]/sum(table(test$good_bad))
Ptp <- Pi*Sensitivity
Pfp <- (1-Pi)*(1-Specificity)
Depth <- Ptp + Pfp
PV_Plus <- Ptp/Depth
Lift <- PV_Plus/Pi
p <- ggplot(data = NULL, mapping = aes(x= Depth, y = Lift))
p + geom_line(colour = 'blue') + labs(x = 'Depth',y = 'Lift', title = 'Lift Curve')
```
提升度一般是这样使用的:如果某项营销活动受成本的限制,又想使营销活动取得非常成功,一般通过Lift曲线进行人员的筛选,即给定某个Lift阈值,反过来确定Depth值。如提升度相比于不作任何模型,使其达到2倍以上的响应,需要设置Depth在前25%以内。同样,我们还可以绘制Gain曲线:
```{r}
#Gain曲线
p <- ggplot(data = NULL, mapping = aes(x= Depth, y = PV_Plus))
p + geom_line(colour = 'blue') + labs(x = 'Depth',y = 'PV_Plus', title = 'Gain Curve')
```
实际上,Lift曲线与Gain曲线长的一模一样,只不过是纵坐标不同而已。
胡江堂的基于SAS模型评估系列文章中没有涉及到K-S统计量的讲解,本文就对其作一个拓展,R中还没有找到直接绘制两个连续变量的K-S曲线统计量函数,故这里自定义绘制曲线所需数据的函数:
```{r}
#准备K-S数据
ks_data <- as.data.frame(cbind(good_bad=test[,21], probility))
good_ks <- ks_data[which(ks_data$good_bad==1),'probility']
bad_ks <- ks_data[which(ks_data$good_bad==2),'probility']
#自定义计算累计分布函数值
KS_Data <- function(x, y){
gaps_x <- seq(min(x), max(x), length=1000)
cauculate_x <- numeric()
for(i in 1:length(gaps_x)){
cauculate_x[i] <- sum(x<=gaps_x[i])/length(x)
}
gaps_x <- sort((gaps_x-min(gaps_x))/(max(gaps_x)-min(gaps_x)))
gaps_y <- seq(min(y), max(y), length=1000)
cauculate_y <- numeric()
for(i in 1:length(gaps_y)){
cauculate_y[i] <- sum(y<=gaps_y[i])/length(y)
}
gaps_y <- sort((gaps_y-min(gaps_y))/(max(gaps_y)-min(gaps_y)))
return(list(df = data.frame(rbind(data.frame(Gaps = gaps_x,Cauculate = cauculate_x,Type = 'Positive'),data.frame(Gaps = gaps_y,Cauculate = cauculate_y,Type = 'Negtive'))), KS = max(abs(cauculate_y-cauculate_x)), x = gaps_y[which.max(abs(cauculate_y-cauculate_x))],y = abs(cauculate_x[which.max(abs(cauculate_y-cauculate_x))]-cauculate_y[which.max(abs(cauculate_y+cauculate_x))])/2))
}
#绘制K-S曲线
ggplot(data = KS_Data(bad_ks,good_ks)$df, mapping = aes(x = Gaps, y = Cauculate, colour = Type)) + geom_line() + theme(legend.position='none') + annotate(geom = 'text', x = KS_Data(bad_ks,good_ks)$x, y = KS_Data(bad_ks,good_ks)$y, label = paste('K-S Value: ', round(KS_Data(bad_ks,good_ks)$KS,2))) + labs(x = 'Probility', y = 'CDF')
上图结果显示,K-S统计量的值为0.43,根据传统的评价准则,也说明该模型还是基本行得通的。
在数据挖掘实际过程中,需要横向的比较多个模型评估结果,还需要纵向的比较同一个模型不同参数调整的评估结果。通过上面所说的这些评估方法,终能够选出一个最理想的模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26