
我们无须更多的数据科学家 只须降低大数据使用门槛
这个国家急缺数据科学家”,目前几乎所有关于大数据的文章都提出了这么一种观点。广受热议的McKinsey公司2011年度调查指出许多机构即缺少对大数据有深刻洞见和理解的人,也没有运用大数据来做出明智决断并执行的动力。
然而在这些讨论中有些东西似乎被忽视了,那就是如何打破瓶颈进而使得大数据能够直接为企业家们所用。我们曾经在软件工业中做到过这一点,我们能够再次做到。
为了达成这个目标,透彻理解数据科学家在大数据中所扮演的角色是很重要的。目前,大数据是一个熔炉,分发着数据结构以及类似Hadoop、NoSQL、Hive以及R这样的工具。在这个技术含量非常高的环境中,数据科学家的工作就像是系统与那些来自不同领域专家之间的门卫与调解人。
虽然有点难以概括,但基本上数据科学家发挥着三种作用:数据架构、机器学习以及数据分析。虽然这些职责很重要,但事实上不是每个公司都需要一个像Google或者Facebook有的那种高度专业的数据团队。关于创造符合目标产品以及剔除技术复杂性的解决方案可以使大数据为商家所用。
随便举个例子,想想发生在世纪之交的网络内容管理革命吧。网站成了一时的时尚,但是各领域专家们却遭遇了源源不断的麻烦,因此我们有了一个瓶颈。所有网站上新的内容都需要IT编辑去编排内容甚至硬编码。那最后又是怎么解决的呢?我们把网络内容管理系统中所需要的核心内容概括并提取出来,然后把它们做成不懂技术的人也会用的模式。
让我们以电子商务为背景,稍微深挖掘一下现今的数据科学家所扮演的角色吧。
用数据架构降低复杂性
缩小范围是降低复杂性的关键。几乎所有的电子商务业务都对获取用户行为感兴趣——预约、购买、线下交易以及社交数据,几乎以上每一项都有目录及客户档案。
对这些基本功能限制范围可以使我们创建标准数据录入的模板,使得数据获取及连通更为简单。我们也需要找到打包不同数据结构与工具(现今包括Hadoop、Hbase、Hive、Pig、Cassandra and Mahout)的有意义的方法。这些数据包必须要符合目标要求,归结起来就是80/20法则:80%的大数据使用方法(所有电商业务需要的全部),可以用20%的努力和技术实现。
巧用机器学习
在机器学习上我们当然需要数据科学家,对吗?好吧,如果你有非常个性化的需求的话,或许对吧。但大部分需要用到大数据的标准需求,比如推荐引擎及个性化系统,都可以被提取出来。举例来说,数据科学家工作的一大块内容是制作“特征”,这是在数据录入里面使得机器学习更有效率的一种东西。我们想一下,所有的数据科学家都要把数据塞进机器并启动它们,那事实就是机器需要人们帮它们指出正确看待世界的方式。
然而,在每一个领域基础上的特征创建都是可以被模板化的。例如每个商务网站都有购买流以及用户分割这些概念。如果各领域专家们可以直接把他们在各自领域的想法和理念直接编码到系统里呢,是不是就可以避开作为中间人及翻译的科学家们了呢?
借用数据分析工具
从数据中自动提取那些最有价值的信息从来都是不容易的。然而,有一些获取特定领域观点的办法可以使商家们更像一个数据科学家去行动。这似乎是最容易解决的一个问题,因为市面上已经有了各种领域的分析产品。
但这些产品目前对各领域专家们来说还是限制太多门槛太高。绝对还需要一个更加友好的界面。我们也需要将机器如何通过分析结果学习放入考虑的范畴。这是非常关键的一个反馈系统,商家们希望把修正放进这个系统中。这也是另一个可能提供模板化界面的地方。
就像我们在内容管理系统中学到的那样,这些方法不能够在任何时间解决任何问题。但将这些技术型解决方案运用在一系列更广泛的数据问题上将会减轻数据科学家们遭遇的瓶颈。当各行业专家能直接用机器学习系统工作时,我们可能就进入了一个能够相互学习的崭新的大数据时代。或许到那时候大数据能解决的问题才会多于它所引起的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28