京公网安备 11010802034615号
经营许可证编号:京B2-20210330
由经管之家(原人大经济论坛)主办的“2015中国数据分析师行业峰会(CDA·Summit)”将于2015年9月11日在北京世纪金源大酒店隆重举行。
本次峰会邀请到了精通数据科学发展前瞻的数据科学家参加,在峰会前期,我们通过峰会系列报道为大家“剧透”各位数据科学家的精彩发言。今天为大家介绍的第一位嘉宾是原 LinkedIn 商业分析部高级总监张溪梦,他对大数据的理解是“解放数据分析师,重构数据革命”。
张溪梦,原 LinkedIn 商业分析部高级总监,曾被美国 Data Science Central 评选为 “世界前十位前沿数据科学家” 。在 LinkedIn 期间,张溪梦带领 LinkedIn 数据分析和数据科学团队,直接支撑公司所有与营收相关的业务。现在张溪梦已经从 LinkedIn 离职,创立自己的公司 GrowingIO。
GrowingIO 的目标是为互联网企业提供方便高效的数据分析服务,从而令企业做到数据驱动,提高商业运营效率。张溪梦表示,数据分析 90%的时间是耗费在技术含量不是很高的脏活上,GrowingIO 最终希望把这部分时间变成 0,让数据分析人员专注于需要人类智慧的部分。
目前,最能体现这个愿景的是 GrowingIO 数据采集技术。GrowingIO 数据采集最大的亮点是不需要开发人员埋点,就可以详细地收集用户的数据。一般为了收集用户的数据,比如浏览轨迹、点击记录和鼠标滑动轨迹等行为数据,开发人员需要大量的埋点。大量埋点费时费力,而且需要开发人员和业务人员的反复沟通。如果利用 GrowingIO 的系统,开发人员将 GrowingIO 的 SDK 植入系统,业务人员就可以根据业务需求定制数据采集规则。
收集到数据之后,GrowingIO 的分析师会根据数据,帮助客户梳理业务上的问题,提出可能适用的数据分析模型。当客户的运营、销售或者数据科学家熟悉 GrowingIO 系统之后,便可以根据 GrowingIO 采集的原子级别的数据,挖掘出更多的数据分析应用场景,比如提升用户转化率、减低客户流失率和深刻理解客户分群等。这个过程甚至不需要开发人员的介入。
GrowingIO 的联合创始人吴继业,前 Linkedin 数据解决方案总监。GrowingIO 的联合创始人叶玎玎是企业协同任务管理软件风车的创始人。
为什么大数据说得多,做得少?因为目前大数据分析同时需要编程和数据分析两个技能,并且大量的时间耗费在清洗数据等脏活上。因此建立好数据分析基础设施,能够自动完成数据清洗等脏活,允许数据分析人员无需编程技能就能完成工作,将极大地发挥数据分析的价值。
最后,让我们携手进入大数据时代!GrowingIO 是一家致力于成为提供最卓越数据分析产品的公司,以产品和服务有益于他人为终极目的。希望一群能够全情投入,充满激情和创意的人加入我们,一起做些有意思并且伟大的事情。
希望每一个人都有充足的成长空间,你们的成功是我们的目标!
关于GrowingIO : http://www.growingio.com/
扫一扫,更多精彩!
张溪梦将作为嘉宾出席于9月11日举办的2015中国数据分析师行业峰会,届时将有更多的精彩发言与交流!
我们欢迎数据分析行业每一位数据人参加报名!
报名咨询电话:010-53675708/53675718
扫一扫,参会报名
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22