数据挖掘案例—药物选择决策支持
【案例简要描述】
针对病人的病情和体质情况,医生往往需要采用不同的用药。本案例通过数据挖掘,对医院积累的历史数据进行分析,确定病人选择何种药物对治疗疾病最为有效。并开发了相应的药物选择决策支持系统的应用系统。
【背景介绍】
XX病是一种常见的疾病,目前有5种药物可以对其治疗,分别是——A、B、C、X、Y。不同的药物对病人有不同的疗效。历史上,医院往往根据医生的经验去判断针对特定的病人应该选择何种药物。但是由于新医生的加入,这种仅仅靠经验判断的做法造成了很多误诊。
该医院有比较完善的病例留存,为了改变以上局面,也为了更好的利用历史数据和专家经验,该医院决定通过数据挖掘技术对历史数据进行分析研究,并期望能够建立一套有效的药物选择决策支持系统。
【数据说明】
目前有历史病例数据1200条,咨询专家意见,我们提取了其中影响选择药物的若干个变量记入数据库,它们是年龄、性别、血压、胆固醇含量、钠含量、钾含量,最后一个变量是我们需要确定的选择药物,数据存贮在Microsoft Access数据库中。
【数据挖掘过程】
1、 商业理解
在这个阶段我们主要需要描述清楚业务问题,并对我们手头拥有的资源有一个非常清晰的认识。在这个案例中,我们需要根据病人的个人情况和身体特征来确定何种药物对它最为合适。由于问题比较简单,我们的商业理解也比较简单。
2、 数据理解
数据理解阶段用来完成对数据质量、数据之间的基本关系进行探索性分析等项工作。在这个阶段,我们对历史数据中的1200条数据进行图形观察,初步观察病人的情况和身体特征是否与选择药物关系明显。数据流图见图1。
图1:数据理解
下面是产生的一些典型图形,图形解释略。
图2:对数据的初步探索性分析
3、 数据准备
数据准备主要完成对不同的数据源的整合,并且对数据进行适当的变换,使之适合数据挖掘的需要,对于特定的模型,需要把原始数据集合拆分成训练数据集和检验数据集也在这个步骤中完成。
对于本案例来说,由于数据源只有一个,并且数据格式也相对单一简单,我们在数据准备中主要完成对原始数据集的拆分,从而用训练数据集建立模型,用检验数据集对模型的效果进行评估。
在Clementine中,对数据集的拆分,是通过引入一个中间变量来完成的。在本案例中,我们把全部1200条数据中的2/3左右(800左右)作为训练数据集,把1/3左右(400左右)作为检验数据集。我们引入了一个二分变量——拆分变量,这个二分变量对应1200条原始数据有2/3左右为“真”(T),1/3左右为“假”(F)。我们挑出那些拆分变量值取“真”(T)的记录作为训练数据集,那些拆分变量值取“假”(F)的记录作为检验数据集。实现该过程的数据流见图3。
图3:数据准备
4、 模型建立和评估
在模型建立阶段,我们将逐步建立和调整模型,并对如何提高模型的预测效果进行尝试。
(1) 建立最简单的模型。对于训练数据集,我们首先把病人的年龄、性别、血压、胆固醇含量、钠含量、钾含量等不经过任何处理,全部作为预测选择药物的输入变量,而把选择药物作为待预测变量(输出变量)。数据流图见图4,我们建立了神经网络、C5.0和Logistic回归三个模型。
图4:药物选择决策支持模型1
接下来我们用检验数据集对模型进行检验,数据流图见图5。模型检验结果见图6。从检验结果我们可以看出,Logistic模型的评估效果最好,达到了96.21%。
图5:药物选择决策支持模型1检验
图6:药物选择决策支持模型1检验结果
讨论——如何提高模型的效果:从模型检验中我们可以看出,三个模型中可能有不一致的情况,这就使得我们有一种思路,即我们在发布模型的时候,可以考虑把那些三个模型预测一致的才作为预测,而把三者预测不一致的作为待判记录随后进行深入的分析,这样我们就使得模型的精度提高到了98.29%,但是作为牺牲,我们也会约有12%左右的病人是无法判断的,需要我们对记录做进一步的研究。
(2)为了更好的建立和调整模型,我们对业务进行深入了解,引入医生的业务经验。根据医生对医学理论的讨论和过去实践经验的积累,他们认为人体中的钠含量和钾含量对病人选择何种药物的作用并不是特别明显,但是他们的比例却是影响选择何种药物的一个关键因素,所以在我们下面建立的模型中,我们生成新变量——钠钾比例,而剔除钠含量和钾含量两个变量。数据流图见图7,模型我们仍旧采用神经网络,C5.0和Logistic回归三种模型。
图7:药物选择决策支持模型2
类似(1),我们对模型效果进行检验,检验数据流和检验结果分别如图8和图9所示。
图8:药物选择决策支持模型2检验
图9:药物选择决策支持模型2检验结果
从结果中,我们可以看出,随着我们业务经验的引入,我们的模型效果有了显著的提高,并且我们选择模型也发生了变化。精度由原来的Logistic回归最优96.21%提高到了C5.0最优99.75%。
5、 模型发布
模型建立是为了应用,我们前面的全部工作都在于我们建立的模型能够被最终的业务人员所使用,假设我们由以下10个病人的资料数据,需要根据他们的情况判断使用什么药物最好。
表1:病人资料
年龄 | 性别 | 血压 | 胆固醇 | 钠含量 | 钾含量 |
25 |
F | HIGH | HIGH |
0.675996 |
0.074834 |
17 |
F | HIGH | HIGH |
0.539756 |
0.030081 |
23 |
M | LOW | NORMAL |
0.556453 |
0.03618 |
24 |
M | NORMAL | NORMAL |
0.845236 |
0.055498 |
74 |
F | LOW | HIGH |
0.849624 |
0.076902 |
40 |
F | NORMAL | HIGH |
0.67683 |
0.049634 |
32 |
F | HIGH | HIGH |
0.581664 |
0.024803 |
70 |
M | LOW | HIGH |
0.716359 |
0.036936 |
64 |
M | HIGH | NORMAL |
0.640789 |
0.078302 |
45 |
M | HIGH | HIGH |
0.664105 |
0.047819 |
该病人资料也被我们存放在Access数据库中。我们可以考虑以下三种方式对我们的模型进行发布供业务人员(医生)使用。
(1) 直接写报告的方式,通过HTML展示。数据流图10,结果展示实际效果如图11。
图10:模型发布数据流1
图11:报告方式发布结果示例
(2) 把选择药物直接写回数据库。数据流如图12,结果大致情形如图13。
图12:模型发布数据流2
图13:模型发布—把结果写回数据库
(3) 通过Clementine Solution Publisher结合Visual C++开发应用系统界面,业务人员(医生)可以直接输入病人资料,实时的得到药物推荐。发布数据流见图14,系统界面如图15。
图14:模型发布数据流3
图15:模型发布——开发应用系统
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03