
要如何理解大数据相关的2B服务?
2B服务大潮到来,硅谷和中国的科技创业越来越同步了。
问题来了:
2B服务就是SaaS吗?
智慧企业的未来空间是否巨大?
智慧企业的“智慧”意味着什么?
未来企业的可能模式是什么样的?
2B创业企业又应该怎么看待自己所处的领域?
大数据服务公司Palantir联合创始人JoeLonsdale在9月8日的黑马线下沙龙发表了以智慧企业为话题的演讲。
我们对Joe Lonsdale的演讲做了重新整理和解读,不是演讲复述哟。对演讲原文感兴趣的读者可以上网自行搜索哦。
Joe Lonsdale是硅谷大数据服务公司Palantir的联合创始人,是彼得·蒂尔的学徒和投资伙伴。他还是硅谷风投Foundation 8 Partners的创始合伙人。
Palantir尚未上市,但估值已超过200亿美元。
科技创业的第六次浪潮:面向智慧企业的2B业务
回顾硅谷的历史,一共有五次大的科技浪潮:
1930-40年代,惠普崛起,引领了电子浪潮。
1950-60年代,半导体、晶体管诞生,英特尔引领了半导体浪潮。
1970-80年代,电信行业变革到来,思科就是这次浪潮中典型的美国企业。
1990-2000年代,就是大家比较熟悉的互联网浪潮。
2000年之后是全人类同步经历的移动互联网浪潮。
与互联网相关的这两次技术浪潮在普遍意义上为消费与用户端带来了巨大的行为变化,亚马逊、Facebook等就是典型代表。换句话说,后面两次变革是由互联网引领的消费者变革。
那么,硅谷的下一个十年呢?
Lonsdale的答案是:智慧企业。
与以往几次浪潮不同,这个趋势几乎可以肯定将会在中国同步展开。
理解智慧企业的姿势一:从智慧企业应有的样子看数据技术的发展空间
人类社会真正快速的深刻变化往往是由应用技术所推动的,过去几百年人类社会的巨变程度在之前的几万年里都是无法想象的。2C的消费型变革更多的是跟随而不是推动。
对于很多行业,都存在着“现状vs本来应该的样子”这样的一种Gap。人们会想,“如果是这样的那该多好呀”。从这个角度看,这是一个对技术应用前景做展望的可参考视角。
Lonsdale给了几个美国的例子:
A) 在政府领域, 美国政府想解决预算的问题。对于市政预算,通过数据分析服务,政府的决策者可以看到被细分的城市区域里哪些预算是被浪费的、哪些预算是真正应该投入的。
对于养老金,大数据分析可以帮助政府决策者找出欺诈账户,从而能更好的对养老金计划做合理的规划。
B) 在医疗领域, 把生物学、医学和智能企业结合在一起之后,可能会产生全新的医疗保险公司。
智能型的医疗机构有可能自动覆盖大多数的患者诊疗需求,包括常规手术都可能被自动设备所承担。医生只需要做关键决策和操作即可。
在新的体系下,所有人的医疗福利都可能获得大幅提升。
C)在教育领域,常规的教学引导、教学资料提供、学生水平提升是完全可能被基于数据的平台所完成的。这也是传统教育机构所没法量化、没法精准施教的现实。教师的角色可能更多的会在出现例外情况、需要给学生建议的时候才有价值。
D)在金融领域,数据分析搭配数据专家的模式能够有效的减少经纪人的参与程度。这可能会影响到整个金融市场的交易模式。
理解智慧企业的姿势二:抽象流程,具象数据,重构流程
很多人都在讲2B领域的创业风口到来了。我们应该从怎样的角度来理解这个提法呢?
是不是介入到企业的某种流程(比如工资单、报销、客服等等),给它提供与传统On-premise软件不同的所谓“2B SaaS云端服务”就是正确的理解姿势呢?
我们觉得,流程型SaaS可能只是切入企业服务的一种方式,至于能否长期成功还是要看2B服务类创业公司对于未来的理解格局处在怎样的层次上。
传统企业的流程都是线性的,但是在智慧企业里,流程将会由于技术对数据的抽象而形成某些非线性的状态。
非线性的流程状态并不是刻意追求的形式,而是通过对大数据的有效利用把企业传统上的串行流程打破,而后自然演进形成的新型企业运作形态。
上面说的如果不好理解,我们或许可以这么表述上述逻辑:
企业或组织的内部流程和外部环境之间可能会产生错综复杂的大量数据。
过去,这些数据是难以被分析和使用的,企业对它们的利用是极为低效的。
在智慧企业里,会有相应的企业服务帮助这些企业把以往无法处理的数据进行抽象、重构。
被抽象、重构之后的数据就变成了可以被企业相关人员使用的决策工具。
基于大数据的新型决策工具又将会引起企业原有流程的重构。
这类平台型大数据SaaS服务可能会让未来的企业变成“数据处理SaaS平台+专业数据使用人才”的模式。
在这种前所未有的模式下,现有的企业流程可能会被大规模重构,企业的决策机制会发生更为自治的变革,企业的效率会得到提升。
这大概就是所谓“智慧企业”的意思之一。你可以想象,如果全身的器官都具备大脑的某些分析功能,人类会是一个多么不同的物种···
这么看,可以演化成为这类能够对企业大数据进行抽象、重构并引起企业流程重构的平台型SaaS服务公司很可能代表了2B服务领域未来的大方向。
因此,SaaS服务公司单纯把眼界放在优化企业业务流程、降低企业成本这个阶段可能是不够的。
当然,这只是从比较大的图景来看这件事。真正切入、落实的时候,仍然是需要以对现有行业、流程为基础来深入理解企业各个部门和企业整体对特定类型数据的真实需求。
只有在这个基础上,创业公司才可能走出一条在特定领域产生长期价值的大数据平台2B服务道路。
所以,可以心怀太空,但意念需要深度深度再深度的聚焦于企业的真实问题以及数据型服务的自身特质及可扩展性。
对于使用场景,Lonsdale拿服务于美国军方和财政部门的大数据分析公司Palantir举例:
A)100亿美元如何合理有效的分配?这么大体量的资金决策如果没有数据分析支持肯定是有问题的。
B)国防情报文件短时间内会出现海量数据,依靠完全依靠人工是无法搞定分析和决策的。
当然,他的例子是面向政府大型机构的解决方案。如果把场景转向大型企业、中小企业、小微型企业,可能会有很多不同的全新场景出现。
总结
2B服务是未来十年的大趋势,而与大数据相关的2B服务又是重中之重。如何正确的理解它,对于创业和投资都是至关重要的。
对于行业流程、人员决策机制、参与者痛点的深入理解是切入和扩展市场的基础;
对于数据型SaaS平台本身的深入理解是建立长期2B服务事业的基础。
现在看来,“数据机器+人”的模式可能会是未来很长时间里的创新应用基调。
机器负责高效的执行复杂战术、理清数据谜团;人负责看清现象背后的规律、进行关键操作以及制定顶层战略。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09