
重定义商业智能 释放大数据价值
很少有企业机构质疑大数据和分析能够为其带来的巨大价值,但最重要的问题在于,如何在可持续发展的基础上迅速释放大数据的价值,而无需巨额的前期投资。
企业已无法应对非结构化数据和传感器数据在数量和种类上的迅速增长。因而,他们迫切需要增进大数据分析的专业知识和能力,以保持竞争力。
在当今这个以客户为先的时代,工业化规模的分析能力和数据驱动型洞察能力是企业生存的关键,数据必须进行实时处理。这也是大多数企业都面临的挑战。据知名市场调研公司Forrester Research的调查显示,商业智能(BI)是2013年企业项目计划中软件方面最重要的项目。
数据驱动型且洞察敏捷的企业能够很好地转变客户及员工的互动方式,并锁定新的商机。而未能实现现代化并无法充分利用这些新的数据动态的企业,则将面临竞争优势不保的风险。
时间就是金钱
现代企业被寄予厚望,必须要不断提供更好的产品和服务、改进经营、更好地管理风险并开发新的业务模式,以保持相关性。
要想在这种环境中保持领先,企业必须能够分析并高效地使用全部相关数据,这些数据来自人、机器和交易数据等全新来源。这样员工及合作伙伴才能不断创新。
Forrester Research认为,随着数据量不断增长,企业运用数据并从中创造价值的能力在不断提升,公司将能够优化几乎业务运营的所有方面,包括采购、物流和客户体验。
此外,数字化革命等主要动态正在颠覆整个行业;所以,数据驱动型的洞察对企业生存将变得至关重要。因此,商业智能分析在当下和未来都将是企业投资和业务战略的重点领域之一。
传统商业智能环境提供的分析和报告往往基于交易完成后的数据得出企业绩效和分析报告。
所以,传统系统并不能从工业化规模的新形式和大量数据中获得洞察。由于缺乏这项技术,目前许多企业都无法利用数据或在整个企业共享相关数据,这可能会影响企业的业务敏捷度和竞争力。
采取三步走策略
应对这些挑战可能花费极其昂贵,往往令人望而却步,对于那些迫切希望快速成为数据驱动和敏捷的企业尤其如此。
通过“即服务”的方式,企业无论处于转型中的哪个阶段,都无需昂贵的前期投资就能进行改变。
成功的商业智能现代化战略需具备三个核心要素:
1、环境发现将解决“如何将数据分享给更多的员工”这一难题,以便他们能够做出数据驱动型和敏捷的决策。这些环境包括数据池——持有本地格式的原始数据的存储库——数据可视化工具,以及能够在整个企业迅速实现数据共享和分析协作的服务。
2、分析解决方案将支持特定需求以便更高效地运营业务,无论是帮助客户构建新的项目,还是对已有的项目进行有针对性的改进。
3、混合数据管理服务让企业能够通过工业规模的分析来追求业务创新。通过将它集成到业务流程和系统中,便可充分利用所有相关信息,无论来源于企业内交易系统、社交、传感器的信息,还是流动数据。
实现早期里程碑的关键
通过 “即服务”方式,企业能够解决基础设施过时的问题。
如果这种方式是灵活开放的,就能将企业当前商业智能投资的优势与最新的分析创新整合,从而提供真正的商业价值。
这种灵活的消费模式让企业能够迅速抓住传统和新形式数据带来的潜在商机。
进行现代化刻不容缓,重要的里程碑需要尽早树立。
例如,在数据池中设置一个环境发现功能,最少只需要两周时间,尤其是使用云技术的时候,紧接着陆续推出全新的分析解决方案。
三步走方案将大规模转型的风险以及相关成本最小化。仅需12-18周时间,一个可靠的、数据驱动型商业智能环境即可投入运营,这大大降低了总体拥有成本,并提升了服务水平协议。
收益多多
将软件、硬件和咨询服务整合到一起的商业智能现代化计划可降低可预测成本,并且更能够构建整个企业范围内的能力和差异化。改造后的环境将支持:
·在整个企业范围内共享数据:可提升员工的工作能力并激发创新。
·嵌入式分析:获得新洞察以便改善运营和决策流程,并实时提供综合指导。
·降低风险:发现环境和“即服务”部署模式配置快速启用选项。
·业务敏捷性:强化竞争优势和客户互动。
掌握工业规模的大数据
随着数据数量的不断增长,企业发展的当务之急就是提高数据处理能力。
通过追求商业智能现代化,并特别强化“即服务”的模式,企业能够保护自己免受老旧基础设施的影响,且无需大量的前期投资。
通过工业规模的分析和数据驱动型洞察来释放数据的威力,企业将能够优化运营的方方面面。
这对下一波业务创新至关重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15