
大数据之基于模型的复杂数据多维聚类析(三)
除了聚类,对于这个数据的分析还告诉我们一些隐藏很深的关系。比如在模型中变量Y2和Y3有连线,这表明一个人的背景信息和他对于贪污的容忍程度应该有一定的关联关系。具体地说,在Y2所表示的4类人中,你觉得哪一类是最能容忍贪污,而哪一类是最不能容忍贪污的呢?在模型中,通过对这两个变量的条件概率的分析,我们得到了一个答案,有兴趣的同学可以去论文中验证一下自己的猜测。
相关学术工作
隐树模型在密度估计,近似推理及隐结构发现等方面都有具体的应用。在多维聚类分析的应用上,我们分析过市场学数据(COILChallenge 2000),某地区的社会调查数据(ICAC),NBA篮球运动员比赛统计数据。最近,随着算法的提速,隐树模型开始被尝试用于文本分析,比如对于网页数据,博客数据等的话题分析。隐树模型最开始的提出是为了对中医的证候分析提供统计解释,有兴趣的同学可以参考隐结构模型与中医证研究。
最近两年,多维聚类分析引起了很多机器学习研究人员的兴趣。从2010年开始的MultiClust Workshop已经举办了两届,其中第一届是和KDD2010一起举办,第二届是和ECML/PKDD2011一起举办。而第三届也会与SDM2012一起举办。具体参考文献这儿也不罗列了。
多维聚类分析和基于多视图的学习不应该混淆。多视图学习假设数据的多个视图已知,要求视图之间存在充分性(Sufficiency)和冗余性(Redundancy),通过协同训练等技术,主要提高半监督学习,主动学习的性能。多视图学习中针对聚类这样的无监督任务的研究很少,而且它的目标也是如何提高单一的聚类划分的质量,而不是找到多种划分方法。多视图学习也极少涉及如何发现多个视图,而不是假设他们已知。这方面南京大学周志华教授在今年的中国机器学习及其应用研讨会上提到一些初步研究。实际中,可以考虑先用多维聚类分析找到数据的多个侧面(视图),然后再应用多视图学习的方法。
总结
对于一个复杂数据,比如文本,视频,图像,或者生物实验数据,人们可以从不同的角度去诠释这样的数据。数据分析家们已经有了这样的共识,那就是以前的单维聚类方法不再适合大数据的多样性特征。多维聚类分析通过对单维聚类问题的扩展,为复杂数据提供了一种新的探索性分析的方式。我们通过找到数据的不同侧面,按照这些侧面进行分别聚类,然后把各种聚类结果全部以一种简单的方式呈现给领域专家,由专家决定他认为最合适的聚类方法。这样的工作流程清晰定义数据科学家和领域专家的职能,通过两者的合作,提高数据的聚类结果,并且提升数据的可解释性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29