
Uni-variate data 一元变量的数据分析方法
点图dot plot与抖动图jitter plot
当点都重叠在一起的时候,为了更直观分析数据分布情况,可以把点适当抖动到一定位置(适量的偏移)。
下面这个例子,由于x的值是我们要观测的,所以在y上进行抖动。不可以在x上抖动,因为x是观测对象。
一个tip:空心圆圈,是最容易识别的图形。填充的图形造成难以识别内部结构,而线(框或叉)在数据量大的时候往往难以识别。
数据文件 presidents.txt
[java] view plain copy
print?在CODE上查看代码片派生到我的代码片
presidents <- read.fwf("presidents.txt", widths = c(9, 15, 3), col.names = c("id","name","months"))
with(
data=presidents,
{
plot(months, rep(2.5, length(months)),
main = "dot plot and jitter plot",
xlab = "months", ylab = "",
pch = 15, col = "blue",
xlim = c(0, 150), ylim=c(0, 3))
points(months, jitter(rep(1.5, length(months)), 20), col = "black")
})
柱状图 Histogram
柱状图用于分析单元数据的分布。
假设垂直的柱状图:每根柱子有一个宽度,待分析的数据落在柱子的宽度区间内,则进行相应的计数。y是数据落在每个宽度区间内的元素个数,决定了柱子的高度。y值可以是绝对的count,也可以是相对的百分比 binCount/N。binCount是每个柱子绝对的count,N是总的样本数量。
实验数据:serverdata.txt
决定柱状图形状有两个参数:
1. 每根柱子的宽度 bin width (分箱宽度)
bin width太宽,会丢失很多细节信息。太窄,会导致很多箱子都没有数据,从而数据分布的形状不够显而易见。
选择好的bin width很重要。对于正态分布,可以尝试使用Scott rule:
[java] view plain copy
print?在CODE上查看代码片派生到我的代码片
serverdata <- read.table("serverdata.txt", col.names="CPU")
with(
data=serverdata,
{
w=trunc((3.5*sd(CPU)) / (length(CPU)^(1/3)))
par(mfrow=c(2,1))
hist(CPU,breaks=w,freq=T, main = "frequency histogram")
hist(CPU,breaks=w,freq=F, main = "Non frequency histogram")
}
)
bin witdth可以不一样宽:
注意 breaks是一个递增向量,箱宽由当前减去前一个所得。
2. 第一个箱子开始的值(即第一个柱子左边线在x轴上开始的位置)bin alignment
核密度估计 Kernal Density Estimate(KDE)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28