
Uni-variate data 一元变量的数据分析方法
点图dot plot与抖动图jitter plot
当点都重叠在一起的时候,为了更直观分析数据分布情况,可以把点适当抖动到一定位置(适量的偏移)。
下面这个例子,由于x的值是我们要观测的,所以在y上进行抖动。不可以在x上抖动,因为x是观测对象。
一个tip:空心圆圈,是最容易识别的图形。填充的图形造成难以识别内部结构,而线(框或叉)在数据量大的时候往往难以识别。
数据文件 presidents.txt
[java] view plain copy
print?在CODE上查看代码片派生到我的代码片
presidents <- read.fwf("presidents.txt", widths = c(9, 15, 3), col.names = c("id","name","months"))
with(
data=presidents,
{
plot(months, rep(2.5, length(months)),
main = "dot plot and jitter plot",
xlab = "months", ylab = "",
pch = 15, col = "blue",
xlim = c(0, 150), ylim=c(0, 3))
points(months, jitter(rep(1.5, length(months)), 20), col = "black")
})
柱状图 Histogram
柱状图用于分析单元数据的分布。
假设垂直的柱状图:每根柱子有一个宽度,待分析的数据落在柱子的宽度区间内,则进行相应的计数。y是数据落在每个宽度区间内的元素个数,决定了柱子的高度。y值可以是绝对的count,也可以是相对的百分比 binCount/N。binCount是每个柱子绝对的count,N是总的样本数量。
实验数据:serverdata.txt
决定柱状图形状有两个参数:
1. 每根柱子的宽度 bin width (分箱宽度)
bin width太宽,会丢失很多细节信息。太窄,会导致很多箱子都没有数据,从而数据分布的形状不够显而易见。
选择好的bin width很重要。对于正态分布,可以尝试使用Scott rule:
[java] view plain copy
print?在CODE上查看代码片派生到我的代码片
serverdata <- read.table("serverdata.txt", col.names="CPU")
with(
data=serverdata,
{
w=trunc((3.5*sd(CPU)) / (length(CPU)^(1/3)))
par(mfrow=c(2,1))
hist(CPU,breaks=w,freq=T, main = "frequency histogram")
hist(CPU,breaks=w,freq=F, main = "Non frequency histogram")
}
)
bin witdth可以不一样宽:
注意 breaks是一个递增向量,箱宽由当前减去前一个所得。
2. 第一个箱子开始的值(即第一个柱子左边线在x轴上开始的位置)bin alignment
核密度估计 Kernal Density Estimate(KDE)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15