
大数据技术为部队卫勤信息化建设的发展和应用提供了广阔空间,涵盖面向医生的临床辅助决策和科研,面向管理者的管理辅助决策、行业监管、绩效考核,面向药品研发的统计学分析、就诊行为,面向战时伤病员救治时效分析等方面。实现了“数据+环境→信息+规律→知识+思想→智慧”这样一个螺旋式学习提升和价值发现过程。
在医药研发方面,大数据技术对于各方面医疗卫生数据进行专业化处理,如对患者甚至大众的行为和情绪的细节化测量成为可能,挖掘其症状特点、行为习惯和喜好等,找到更符合其特点或症状的药品和治疗,并针对性的调整和优化。在医药研发开发部门或公司的新药研发阶段,能够通过大数据技术分析来自互联网上的公众疾病药品需求趋势,确定更为有效的投入产出比,合理配置有限的开发资源。除研发成本外,医药公司能够优化物流信息平台及管理,更快地获取回报。
在疾病诊断方面,2012年,我国高血压发病率接近18%,患者近2亿,糖尿病患者约5000万,血脂异常患者1.6亿。通过健康云平台对每个居民进行智能采集健康数据,居民可以随时查阅,了解自身健康程度。同时,提供专业的在线专家咨询系统,由专家对居民健康程度做出诊断,提醒可能发生的健康问题,避免高危病人转为慢性病患者,避免慢性病患者病情恶化,减轻个人和医保负担,实现疾病科学管理。对于医疗卫生机构,通过对远程监控系统产生数据分析、医院可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。大型医院通过与社区卫生院卫生服务中心建立远程遥控联系,并将在未来提供“从医院到家”的服务。医疗卫生机构,通过实时处理管理系统产生的数据,连同历史数据,利用大数据技术分析就诊资源的使用情况,实现机构科学管理,提高医疗卫生服务水平和效率,引导医疗卫生资源科学规划和配置。大数据还能提升医疗价值,形成个性化医疗,比如基于基因科学的医疗模式,乔布斯在患胰腺癌以后曾做过基因测序,希望能够通过找出DNA中的缺陷片断方法来战胜癌症。
在公共卫生管理方面,大数据可以连续整合和分析公共卫生数据,通过覆盖全国的患者电子病历数据库进行全面疫情监测,提高疾病预报和预警能力,防止疫情暴发。公共卫生部门则可以通过覆盖区域的卫生综合管理信息平台和居民健康信息数据库,快速检测传染病,进行全面疫情监测,并通过集成疾病监测和响应程序,进行快速响应,这些都将减少医疗索赔支出、降低传染病感染率。通过提供准确和及时的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。2003年,学术界整合出H5N1禽流感感染风险地图,研究发行了H7N9人类病例区域;通过全面分析患者特征数据和医疗数据,然后确定哪些人是某类疾病的易感人群,使之尽早接受预防干预。
在健康危险因素分析方面,随着互联网、物联网、医疗卫生信息系统及相关信息系统等普遍使用,可以系统全面地收集健康危险因素数据,包括环境因素(利用GIS系统采集大气、土壤、水文等数据),生物因素(包括致病性微生物、细菌、病毒真菌等监测数据),经济社会因素(分析经济收入、营养条件、人口迁移、城镇化、教育就业等因素数据),利用大数据技术对健康危险因素进行对比分析,针对不同区域、人群进行评估和遴选健康相关危险因素及制作健康监测评估图谱和知识库,提出居民健康干预的有限领域和有针对性的干预计划,促进居民健康水平的提高。如美国一个医疗小组对一名“腓骨肌萎缩”病人和他的10余名亲属进行全基因测序,随后使用专用设备和先进的统计分析软件对获得的数百G的数据进行对比分析,很快就精确地获得了致病基因和发生突变的位点,为该病的预防提了可靠的遗传学依据。
战时卫勤保障方面,一是伤员时效性救治。现代卫勤保障已经越来越依赖高科技手段,将伤员基本信息及其医疗后送信息进行数字化处理,通过战时卫勤信息平台和信息处理系统实现伤员卫勤信息共享,充分发挥卫勤信息优势,伤病员后送确保战时各级救治机构实施精确化卫勤保障,为卫勤部门和救护机构在伤员第一时间第一地点提供信息保障,从而实现伤员“时效救治”提供时间保证;伤后不同救治措施,其救治效果不同,数字化伤员为实施高级生命支持治疗提供了量化依据,为实现伤病员“时效救治”提供了质的保证;数字化伤病信息随伤员在后送链上流动,其信息编码随同伤情变化而变化,为后方医疗机构采取适当的救护措施提供了“量”上的依据;数字化伤员信息以电子形式记录伤员信息档案,借助现有的成熟的网络系统,通过电子病历为远程伤员会诊提供技术支持。二是物资实时可知、可视、可感、可控。战救物资智能化管理通过射频识别(RFID)、条形码识别、数字化掌上电脑(PDA)等技术手段,实现了战救物资保障智能化应用,对供应、运输、存储、配送、装配、在用、报废环节进行分析、总结,采用智能识别技术、智能采集技术、智能定位技术、智能追踪技术、智能监控技术等新一代信息技术,形成智能化应用模式,以满足野战物资保障精益化管理的需要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27