京公网安备 11010802034615号
经营许可证编号:京B2-20210330
新制造企业革命:工业大数据与CPS应用
“为什么CPS对中国制造有跳跃式的影响,中国的利益点在哪里呢?这些数据(数据分析师)出来之前,一定是有隐秘,所以需要一个消化系统,你需要机器的软件,找特征,我们装备也是这样的,把数据变成不同的特征。经过分析之后把设备的关系建立起来就不容易出故障。”
“从2011年GE形成了工业大数据的观念,一台发动机在上面,经过数据的特征回到机器再转成信息分享出来。”李杰讲到,“我们2011年所有的数据从历史数据开始,到现在控制器数据,甚至我不愿意用的数据,都来做整合分析,这些数据你要有一个分析的方法,找出还没有发生的问题,这个在2015年以前是一个科学上最大的缺失,当初我们提出的观念很多人不了解,企业界说很合理,但是不知道怎么去实现。”
对于今天我们所获取到的诸多特征信息,李杰给出了一个很形象的比喻,“好比一个人,一个健康的心脏,可能胆固醇、中风都会发生,但是我怎么知道你会发生,需要测量胆固醇来分析你的风险等级,所以每个方向都不一样。”
李杰讲到,从航空领域来说,我们通过监测飞机数据(数据分析师培训),把数据简化、归类、比较,不用每一次做分析,这样数据量就减少了很多,避免了很多不必要的发动机监控,之后我们发现大数据的挑战不是在数据量,真正的挑战是数据的自然碎片化问题,你拿到数据的时候天气跟之前不一样,环境跟之前不一样,数据的有效性受到很大影响,所以环境背景很重要,所以我们就开发了Cyber。
另外,李杰还讲到,比如我们做的实体海上风电,可以把状态、发电量,发电组做比较,可以看出差异化,看出关系,在这些基础上到第三年可以很快预测哪一个风电不稳。针对机床运行时候的多种影响,我们发明了Cyber-Twin Machine,信息实体对称模型。这套模型是今天比较成功的产品,已经在上海刚刚展示过。
李杰认为大数据的目的就是没有数据,需要我们找出逻辑关系,在今年上海的工博会,已经展示的“风云”就是使用的这个平台。而CyberTwin的观念是不同的物体运动的时候会产生大量数据,我们需要再通过其它的数据把这些数据进行简化。
随后,李杰还给我们分享了一个目前比较成功的案例,“有一个做机床的小企业,用锯片切飞机发功机的叶片,锯片切10片、8片就坏掉了,这是德国的锯片,因此我们想说刀具是软肋,那就让刀具变成数据化,我们试了一下,这在去年的美国展示过,用刀具切的时候,把量跟速度建档,可以评估不同的健康指标,不同的力,我们建立了一个数据模型,可以把特征找出来,就是刀子从新到坏的过程。对此,德国的刀具厂商说,你是不是知道我跟别的刀具有什么区别,有什么缺点,我说当然知道,那么他说,麻烦你不要说出去,而这个机床企业得到这些数据以后,可以依靠这些数据‘威胁’德国的刀具供应商对产品打折,当然这种‘威胁’是正面的。”
最后,对于中国制造2025年要做哪些事情,以及大数据对人民、社会、国家、乃至全球都会做出哪些具有的贡献。李杰给出了自己的答案,“智慧海洋中的‘5S’工程,这‘5S’就是韩国造船和中国造船的区别,韩国的船是来自星星的,而中国的船是来自北斗,中国造船真正能走向世界就一定是依靠大数据,所以应该为中国骄傲。”数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27