
一站式大数据分析平台,“洗剪吹”的执着
2015年,平台化的发展趋势日益明显,在大数据领域尤为突出。于是闻风而动的数据分析厂商也开始致力于构建一个快速、便捷的一站式大数据分析(数据分析师认证)平台,把数据分析过程的三个阶段,数据准备、探索式分析和深度分析全部涵盖。结果,一个专注“洗剪吹”的平台就此诞生了。
数据准备,“洗”尽铅华
在数据分析领域,数据准备是一切分析的前提所在。由于数据分析的核心是数据,但是并非全部数据是都可以直接使用的。由于数据可能来自于企业自身的数据收集系统,可能来自网上的其他企业,也可能是第三方数据收集机构,各种类型数据混杂在一起,水平参差不齐,导致很多数据并不能达到可处理条件。但是如果简单粗暴的过滤掉这些数据又将造成不可估量的损失,因此平台中,数据的前期处理准备工作便成了整个分析过程的前提所在。
但是这一前提却成为了很多平台的困扰所在。如果采用大公司的ETL进行处理,虽然可以清洗的比较精细,但是消耗的时间却有所提升,且未必符合后续分析的要求,违背了平台化的初衷;如果采用的手段过于简单,则可能导致一些数据处理不合格而造成数据流失。2015年,一些新的产品给出了答案,以永洪科技最新的一站式大数据分析平台Yonghong Z-Suite V6.0为例,数据并没有进行彻底的清洗,而是利用自服务把原始数据进行加工,做一些诸如数据清洗、表关联关系设定等轻量级的数据建模,最终变为可分析使用的中间数据。而利用这一方案作为数据准备方案,在保证了速度和用户的体验感的同时,所得到的处理结果对后续的使用也有较好的适应。
“剪”的断,理不乱,是探索式分析
探索式分析是平台的主体,在数据准备完成后可以提供给客户全面的数据分析(数据分析师培训)服务。这一阶段的优势在于用户可以根据业务需求灵活的变换数据组合维度和指标,调整指标的计算方法,选择适配的展现形式,通过符合用户逻辑直觉的交互式体验,得出探索式分析结果。
从中可以看出,探索式分析最大的特色就在于他的灵活性和不可预见性。当用户针对某事件有疑问时,平台可以从多角度、多维度做出解答,同时由于角度的不确定,给出的答案也就就有不可预见性,用户可以迅速的从更多的角度了解的产品可能存在的问题。探索式分析,这种灵活到自己都想不到的特质所能带来的也就不仅仅是授之以鱼,还能促使用户提升看待问题的视野,透过问题看本质,得到数据分析真正的价值,做到授之以渔。
另外,与传统平台相比,探索式分析还提升了其易用性和用户体验。以往来讲,由于传统分析所得出的结果表现方式单一、不够灵活等原因,B2B行业是不太注重用户体验的。这就导致了数据分析最终的结果只有公司顶层人员才能得知,据此作为公司改进的判断依据。但毕竟一线人员才是数据的直接产生者和执行者,他们每天面对新的问题会有新的需求,以往的方式对这个矛盾则显得束手无策。而探索式分析则可以很好的解决这一点,使用难度较低,更多的人可以去用,去分析,去解决,去得到他们所需要的东西,然后将所得结果灵活的呈现给公司的各个层面,充分发挥数据分析的优势,提升企业整体水平。
深度式分析,“吹”尽黄沙始到金
探索式分析提供给客户数据分析的广度,而深入式分析则提供给客户深度。那么为什么客户会需要深入式分析呢?原因在于探索式分析是有自身的限制的。如果客户看遍千山,用尽所有维度依然未能解决问题呢?如果数据模式没有被完全识别,客户如何得知哪些维度是重要的呢?如果客户得到了探索式分析的结果,却感觉不够有说服力呢?在这种情况下,常规分析方法已经不能满足客户对数据分析的需求,这时深度分析就可以派上用场了。
深度分析可以在未识别的模式下,通过挖掘算法,对数据的特征、规律和预测给予分析人员指导。当客户面对未知数据时,难以确定从哪些维度入手,结果自然是没有维度可选。如果没有维度怎么办?自己创造维度。一直以来,深度分析对于很多客户来讲都是可望而不及的,其技术要求门槛较高,CDa人才稀缺,挖掘算法难度较大,让并不熟悉的基层业务人员学习使用更是困难。那么能否做到在不懂挖掘算法的同时还可以使用深度分析呢?平台可以做到。在找不到维度分析时,深度分析作为不属三界之内的第四维度被客户使用。针对业务人员常用的几个功能如聚类、分类、回归、时序等算法布置在平台内,降低使用难度,让基层人员亲自使用深度挖掘寻求自身所需。
在一站式数据分析平台中,数据准备阶段由自服务完成,迅速得到可数据分析师分析数据后,深度式分析与探索式分析进行有机结合,二者各司其职,互补互助。让基层人员在面对任何维度,任何层次的数据分析时都可以轻松应对。身为“洗剪吹”,就要有一颗吸引大众关注的心啊!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29