
R语言是S语言的一种开源实现,一种用于数据分析和图形化的编程环境。资深分析师Catherine最近撰文结合自己的实践经验详细介绍了R语言的优点和缺点。
Catherine指出,R主要用于做统计工作。你可以把它看成是像SAS Analytics分析系统的竞争者之一,R如此强大,诸如StatSoft STATISTICA 或者 Minitab与R相比,就不值一提了。
许多专业的政府部门、商业和制药行业的统计人员和方法论者把他们的事业都倾注在了IBM 的SPSS或者是SAS上,但是他们并不用写一条R代码就能用。所以,从某种程度上来说,决定去学习R是一个事关企业文化和你如何去工作的问题。我在我的统计咨询实践中使用好几种工具,但是我所用的大部分都是R。
关于R语言的优点,Catherine列举了若干条:
Catherine进一步指出,R是在S-Plus开发的附加模型的基础上对S的一种实现。有时候,同样的人也参与进对R的开发中。R是在GNU许可证下的一个开源项目,在此基础上,R通过不断的添加大量的包而持续增长。R把那些能被当做同一组安装,并且可以被R在会话期访问的数据集合、R函数、文档和动态加载项用C或者Fortran打包到一起。R的包添加新的功能到R,并通过这些软件包,研究人员可以很容易地分享他们的同龄人之间的计算方法。某些软件包是范围有限的,其他代表统计学的整个领域,含有其他一些包含了前沿的发展。事实上,许多统计学方面的开发包在变成商业软件之前最开始都是以R的包的形式出现的。
对于InfoSphere Streams和R语言的关系,Catherine表示,InfoSphere Streams的是一种先进的计算平台,允许用户开发的应用程序,以快速的采集、分析和关联信息,因为它会接收到数以千计的实时数据源,处理非常高的数据传输率:高达每秒数以百万计的事件或消息。它包括一个R-项目工具包。
InfoSphere Streams是一个计算平台,集成了对数以千计的数据源高流速的数据进行分析的开发环境。这些数据流的内容通常是非结构化或半结构化的。分析的目标是检查对那些基于实时事件的数据和直接决策的模式变化。SPL是InfoSphere Streams的编程语言的简写,它通过一个反映了数据的动态本质和快速分析和响应的必要范式来组织数据。
我们从经典统计分析的电子表格和通常的平面文件还是有很长的路要走的,但R都能适应。至于3.1版,SPL应用程序可以将数据传递到R,从而使用R的丰富的包库。InfoSphere Streams支持通过创建相似的R对象来接收包含着SPL元组(SPL中基本的数据结构)中的信息来支持R分析。InfoSphere Streams的数据可以传递到R作进一步的分析并把结果传回给SPL。
当然,R语言不是完美无缺的,Catherine也列举了R语言的缺点:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15