京公网安备 11010802034615号
经营许可证编号:京B2-20210330
论道会展业与大数据二者关系
会展业与大数据结合的话题常被业内提及,但是大数据如何影响和服务于会展业、两者之间关系目前处于什么状态,至今还没有看到详尽的阐述。
我们寄希望于技术人士对大数据之于会展业的话题作详细的解读,因为泛泛而谈总有“忽悠”的感觉。
首先,一个最基本的判断是,会展业仍处在大数据运用的初级阶段。会展业是最重视数据的行业之一,但是在从一般数据向大数据过渡的过程中,会展业仍处在探索的初级阶段。
大数据的主要用途之一在于预测,即基于消费者洞察的分析和推断。因此,理想情况下产品的研发、设计应该基于大数据对消费者偏好的“捕捉”和归纳。具体到展览,在“展览立项”分析上,大数据还很少发挥作用。
在营销方面,会展业对大数据的利用也乏善可陈。无论在营销渠道的拓展和对营销渠道有效性的评估方面,都没有看到典型的案例。此外,大数据时代的一个重要特征是对数据的专业分析。即便从技术手段上可以实现海量数据的收集,没有专业的数据分析人员,对大数据的分析解读也无法完成,实现大数据效应最大化更无从谈起。在这方面,会展业还“任重道远”。
在会展大数据方面值得称道的领域主要体现在会展现场的管理方面。通过观众“跟踪”技术(RFID技术或蓝牙NFC技术),优化门禁系统,特别是跟踪观众在会展场馆的活动轨迹和规律,分析人们对产品及企业的关注度,并调整展览的运营管理。这方面已经有一些很好的实践和探索。利用上述技术,一方面,展商和买家(终端)可以在现场利用相关技术实现对彼此位置的准确感知,尝试更高效率的贸易合作;在展后,展商也可以查询哪些客户到过展台,对哪些产品感兴趣,以实现精准营销和产品结构及功能的调整。另一方面,主办方通过大数据了解客户喜好和感兴趣的产品信息,可以更好地对展览项目进行调整,为客户服务。
其次,会展业大数据面临的问题还有很多,主要涉及以下几点:
一、从数据来看,精准的数据库仍是会展项目主办方的主要工具,原因在于数据量。
对比其他诸多行业,会展业支配的数据量并不大。大数据之所以比数据多了个大字,是因为在数据的数量上、获取数据的速度和方式上、包括对数据的分析处理上的差异。其中,量是大数据的一个维度。从举办单个展览项目来看,目前主办方处理数据的量是有限的,即使规模达到几万平方米的大型展览项目,通过传统数据库以及传统的数据处理方式也能从容应对。
大数据关于样本=全部、重关联不求因果的理念,更多的是基于海量数据的现实。笔者个人观点:一旦数据数量可控,人们自然会回到因果分析上来。因果分析是人类探索自身和自然的终极理想,过去是将来也是。从这个意义上说,传统数据库通过因果分析实现精准营销和精细化运营仍然是会展业的主要操作方式。
二、大数据需要专业的数据分析能力。
笔者曾看过励展对中国部分行业出口目标市场的分析,总体感觉是,即使在对传统数据的挖掘和分析上,很多展览企业做得很不够,需要提高的地方还有很多。对于大数据,分析技术和能力要求更高。业内目前有一种倾向,过度关注数据采集技术和大数据的意义,对于数据分析能力关注极少。对于大多数企业而言,不要好高骛远,即便是踏踏实实地做好对传统数据的分析,也是个挑战。
三、在展览场馆的数据基础设施建设方面目前还有令人困惑的地方。
一方面,主办方对基础设施要求逐渐提高,最基本的带宽要求在很多场馆都没有达到;另一方面,一旦场馆对IT基础设施进行大幅度升级,学习重庆会展中心的做法,又会造成主办方的矛盾心理,对数据安全的担心增加。当然,这是个具有中国特色的问题,中国的场馆经营方对自办展的喜好或者说“情结”,尽人皆知。在中国的诚信环境下,主办方产生疑虑难以避免。
四、投入产出问题。
不同的企业对于大数据应该有不同的态度和方式。考虑问题的原则应该是投入产出比。总的说来,由于投入巨大,无论场馆方还是组织方只有比较有实力的企业才可以考虑在大数据方面进行投入。小企业即使有在大数据方面探索的雄心,也只能退而求其次,寻求与第三方服务商的合作。
最后,对会展大数据的研究和应用,目前所做的只是“九牛一毛”,远谈不上穷尽。
大数据除了在会展立项、营销、管理和运营等方面将产生积极作用之外,围绕人员流动密集、物流集中的会展活动应该还有其他层面的应用。其中,关键是投入产出比和利润模式问题。在利润模式方面,是有了清晰的利润模式再去收集数据,还是在数据的收集之后再去挖掘数据的其他使用价值和利润模式,是很多行业都会碰到的、令人困惑的问题。
以上是从非技术角度对会展大数据的粗浅看法,仅作引玉之砖。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23