
数据挖掘应用开发中的辩证法
数据挖掘应用的开发流程见下图,因为数据挖掘应用整个开发流程是一个探索的过程,所以各个过程之间不是严格分开的。
数据挖掘应用,是数据驱动的应用,不同的用户,因诉求不同,观察同样的数据,理解也不尽相同。在浏览数据时,建议不断问自己:用户是谁?分析的对象是谁?要解决什么问题?只有不断的提醒自己,才能保证分析过程的始终有一条清晰的主轴,这是在分析传统应用时非常不同的地方。传统的应用,需要解决的问题是很清晰的,已具备的条件也是清楚的,缺少的就是设计和实现。
定义问题阶段,具体的问题,可能对最终方案直接产生较大影响的时,解决这个问题,最终的硬件需要多少?譬如:通过信令数据分析手机用户的常驻点行为。一个应用是给公安系统开放接口:输入一个手机号,将指定用户最近的常驻点显示出来。另一个应用是给交通部门开放接口,根据用户群体的行为,规划道路设计。这两类应用,从数据分析角度观察都不大,都是常驻点分析,但从具体的应用观察,系统架构设计完全就不是一回事了。
解决相同的问题,可以有多个模型,不同的模型,对数据格式有不同的要求。数据的预处理过程与模型紧密相关。同样是解决聚类问题的算法,有的算法能够直接处理大、中、小这样的数据类型,有的算法需要大中小转换成 0、1、2这样的数字才能处理。
选择一个模型时,最终的分析结果可能并不理想,这时不能轻易的否定掉这个模型,如果数据预处理不到位,好的模型也会产生不好的结果。反过来,选错了模型,数据预处理模块再怎么努力,效果也不会有本质的提高。对于系统设计人员,除了知道不同的分析模型对应解决的问题,还需要知道每个分析模型适用范围和先决条件。
数据预处理过程还有一个误区,原始的数据总是有残缺的和异常值等现象存在。但从另一个角度思考,水至清则无鱼,异常数据不等于无价值数据。异常数据对数据分析结果肯定有影响,但如果把异常数据都穿上漂亮的衣服,那么有可能就会将数据的本来面目同样隐藏起来了。对异常数据的处理态度,还是与具体的应用有关,如果是分析人员的常驻地点,异常值价值就不大,如果是分析信用卡诈骗的应用,异常值就是价值特别高的数据。
数据预处理,从某种意义说就是一门艺术,是整个数据挖掘过程中最耗时的一个过程。
选择了一个模型,效果好不好,还需要对模型的效果进行验证。模型需要快速的反馈结果。验证模型的过程,是一个反复的过程,期间需要对不同的参数进调整。如果不能快速输出结果,例如每调整一个参数,都需要一天才能看到最终的运行结果,在系统设计过程中,这样的速度是不能接受的。为了能够快速的验证模型,需要对数据进行抽样。抽样过程可以分为广度优先和深度优先两种方式,譬如:通过上网记录分析用户的行为习惯,在选择和验证模型时,不可能对全量数据进行分析。这时,可以选取部分人群进行深层次的分析:选择100个人,分析3年的上网记录。也可以选取全量人员,分析最近一个星期的上网记录。具体采取何种方式,还是与具体的应用相关。
验证模型时,除了从技术方面考虑,还要从考虑成本的可行性。成本可分为直接成本和替代成本。直接成本,就是按照现在的模型投入到生产环境中,最乐观的情况下,需要多少硬件成本和后期维护成本。影响直接成本的因素很多,在相同的模型下,分析精度是影响直接成本的一个重要因素。除了直接成本,还要考虑替代成本。什么是替代成本?举个例子,有个数据分析应用是:分析电信用户账单,找出高价值用户。开发成本100W,硬件成本200W,后期维护需要两个工程师,每年成本50W。对应这样的系统,达到的分析效果,很可能雇佣两个普通职员,采用普通SQL语句和EXCEL表格统计,就能把相同的事情做了。此种场景,替代成本是很低的,系统是没有竞争力。
选定了模型,下面就是部署模型了。部署模型不是简单的将验证过的模型放在生产环境下运行。部署模型,是一个完整的开发流程。验证模型时,为了提高反馈速度,可以不考虑系统的完整性、架构、开发语言、可服务性等等因素。简单说,怎么快就怎么来。不同应用,部署模型的过程不一样。
例一:文本分类器。在验证模型阶段,使用不同的算法对大量的语料进行分析,输出一个模型,然后使用另外一些语料对这个模型进行验证,如果可行,将这个模型部署到生产环境中。此例中,被部署的模型可以使用模型验证阶段相同的技术得到。但是使用这个模型,验证和生产的实现可能完全不一样。在验证阶段,慢慢对文本进行分类问题不大,但在生产环境中,有大量待分类的文本需要处理,效率、并发、接口方式都需要综合考虑了。
例二:通过分析信令信息得到用户的常驻地。此应用,验证模型中的直接产出(如代码)在生产环境中就很难复用。模型验证时,可能使用Python语言编写的公开代码库,在实现时为了效率,可能采用JAVA在Hadoop架构上实现。
部署模型阶段,简单理解就是常规系统的开发过程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18