京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘应用开发中的辩证法
数据挖掘应用的开发流程见下图,因为数据挖掘应用整个开发流程是一个探索的过程,所以各个过程之间不是严格分开的。
数据挖掘应用,是数据驱动的应用,不同的用户,因诉求不同,观察同样的数据,理解也不尽相同。在浏览数据时,建议不断问自己:用户是谁?分析的对象是谁?要解决什么问题?只有不断的提醒自己,才能保证分析过程的始终有一条清晰的主轴,这是在分析传统应用时非常不同的地方。传统的应用,需要解决的问题是很清晰的,已具备的条件也是清楚的,缺少的就是设计和实现。
定义问题阶段,具体的问题,可能对最终方案直接产生较大影响的时,解决这个问题,最终的硬件需要多少?譬如:通过信令数据分析手机用户的常驻点行为。一个应用是给公安系统开放接口:输入一个手机号,将指定用户最近的常驻点显示出来。另一个应用是给交通部门开放接口,根据用户群体的行为,规划道路设计。这两类应用,从数据分析角度观察都不大,都是常驻点分析,但从具体的应用观察,系统架构设计完全就不是一回事了。
解决相同的问题,可以有多个模型,不同的模型,对数据格式有不同的要求。数据的预处理过程与模型紧密相关。同样是解决聚类问题的算法,有的算法能够直接处理大、中、小这样的数据类型,有的算法需要大中小转换成 0、1、2这样的数字才能处理。
选择一个模型时,最终的分析结果可能并不理想,这时不能轻易的否定掉这个模型,如果数据预处理不到位,好的模型也会产生不好的结果。反过来,选错了模型,数据预处理模块再怎么努力,效果也不会有本质的提高。对于系统设计人员,除了知道不同的分析模型对应解决的问题,还需要知道每个分析模型适用范围和先决条件。
数据预处理过程还有一个误区,原始的数据总是有残缺的和异常值等现象存在。但从另一个角度思考,水至清则无鱼,异常数据不等于无价值数据。异常数据对数据分析结果肯定有影响,但如果把异常数据都穿上漂亮的衣服,那么有可能就会将数据的本来面目同样隐藏起来了。对异常数据的处理态度,还是与具体的应用有关,如果是分析人员的常驻地点,异常值价值就不大,如果是分析信用卡诈骗的应用,异常值就是价值特别高的数据。
数据预处理,从某种意义说就是一门艺术,是整个数据挖掘过程中最耗时的一个过程。
选择了一个模型,效果好不好,还需要对模型的效果进行验证。模型需要快速的反馈结果。验证模型的过程,是一个反复的过程,期间需要对不同的参数进调整。如果不能快速输出结果,例如每调整一个参数,都需要一天才能看到最终的运行结果,在系统设计过程中,这样的速度是不能接受的。为了能够快速的验证模型,需要对数据进行抽样。抽样过程可以分为广度优先和深度优先两种方式,譬如:通过上网记录分析用户的行为习惯,在选择和验证模型时,不可能对全量数据进行分析。这时,可以选取部分人群进行深层次的分析:选择100个人,分析3年的上网记录。也可以选取全量人员,分析最近一个星期的上网记录。具体采取何种方式,还是与具体的应用相关。
验证模型时,除了从技术方面考虑,还要从考虑成本的可行性。成本可分为直接成本和替代成本。直接成本,就是按照现在的模型投入到生产环境中,最乐观的情况下,需要多少硬件成本和后期维护成本。影响直接成本的因素很多,在相同的模型下,分析精度是影响直接成本的一个重要因素。除了直接成本,还要考虑替代成本。什么是替代成本?举个例子,有个数据分析应用是:分析电信用户账单,找出高价值用户。开发成本100W,硬件成本200W,后期维护需要两个工程师,每年成本50W。对应这样的系统,达到的分析效果,很可能雇佣两个普通职员,采用普通SQL语句和EXCEL表格统计,就能把相同的事情做了。此种场景,替代成本是很低的,系统是没有竞争力。
选定了模型,下面就是部署模型了。部署模型不是简单的将验证过的模型放在生产环境下运行。部署模型,是一个完整的开发流程。验证模型时,为了提高反馈速度,可以不考虑系统的完整性、架构、开发语言、可服务性等等因素。简单说,怎么快就怎么来。不同应用,部署模型的过程不一样。
例一:文本分类器。在验证模型阶段,使用不同的算法对大量的语料进行分析,输出一个模型,然后使用另外一些语料对这个模型进行验证,如果可行,将这个模型部署到生产环境中。此例中,被部署的模型可以使用模型验证阶段相同的技术得到。但是使用这个模型,验证和生产的实现可能完全不一样。在验证阶段,慢慢对文本进行分类问题不大,但在生产环境中,有大量待分类的文本需要处理,效率、并发、接口方式都需要综合考虑了。
例二:通过分析信令信息得到用户的常驻地。此应用,验证模型中的直接产出(如代码)在生产环境中就很难复用。模型验证时,可能使用Python语言编写的公开代码库,在实现时为了效率,可能采用JAVA在Hadoop架构上实现。
部署模型阶段,简单理解就是常规系统的开发过程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27