京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用户研究定量分析要让数据来说话
无论是产品经理、设计师、工程师,大家都是为用户服务的。用户各有所好。你喜欢这个,我喜欢那个,也有我们都喜欢的。那么在用户的心理隐藏着什么样的秘密呢?要想发现其中的奥妙,通常有两种方式:定性研究、定量分析。定性的信息告诉你为什么会发生,它灵活、快速、细节丰富,但缺乏普遍性,我们能听到的只能是少部分用户的声音,他们是否代表大多数用户是无从判断的。另一种方法就是让数据来说话,定量的信息告诉你发生了什么,它真实、精确。也就是说,用户研究并不一定总要使用“定性研究”这样的方式才能进行。借助数据分析也可以达到了解用户喜好的效果。
一、“数据分析”在“用户研究”中的作用
“数据分析”如何作用于“用户研究”呢?
(1)了解用户概况
了解目标用户“背景信息”:通过数据统计目标用户“人口统计”信息,比如,年龄构成、性别比例、等等(如下图),达到对目标用户背景情况摸底效果
(2) 区分用户群体差异
按照多种维度,发现用户不同特征,将相同特征用户归类,进而准确形成用户分组,为之后进一步用户分析工作在此基础上进行,为产品优化设计工作指明用户群体的方向(如下图)
(3) 分析用户偏好
以调研的产品为核心,按照多种维度统计“频次”、“含量占比”,从而挖掘目标用户各种“偏好”,让“产品优化设计”能够迎合用户需求,有的放矢:如下图一,产品使用地点排行,挖掘用户对地点的偏好;如下图二,产品分类排行,挖掘用户对产品分类的偏好

二、 用户研究中的“数据分析”方法
收集用户数据->制定编码分类->数据分析(用户特征提取)->确定优化方向->提升商业回报,下面进行简要介绍
(1)制定编码分类
抽取近几周到几个月内的数据,根据分析的产品目标建立编码规则,执行编码,直到不再产生新的编码为止。编码可以是任何维度上的,只要对后续的分析有帮助
(2)数据分析(用户特征提取)
编码建立之后,围绕研究“目标产品”用户特征这个中心,按照各种有用的维度进行数据统计,通过数据分析结果,分析提取出“用户特征”
(3)确定优化方向
在分析出来的众多“用户特征”中,根据商业目标和用户体验双方向共赢的原则,寻找产品优化设计的方向
三、 为“数据分析”穿上美丽的外衣
(1) 数据说明“图形化”,让分析结果更易理解
给统计图表增加“图形化数据说明”,可以更直接快速的传达结论,更易于读者理解,如下方的两张图,分别给横轴的“性别”、“年龄”、“峰值原因说明”增加了形象的图形说明

(2)数据分析图,要能直观的反应结论
统计图表中,在说明不同类别占比或者频次有差异的时候,图形本身尺寸大小建议和所反馈的占比频次成正比,以便读者观看分析报告时候,一目了然,快速理解图表含义,比如下方图形,“YES类”占比多所以“图形面积”大;“NO类”占比少,所以“图形面积”小
最后,“数据分析”需要与“定性研究”相结合,才能发现规律并且追根溯源,更高效的指导设计和产品。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27