
数据分析面试题:如何从10亿查询词找出出现频率最高的10个?
1. 问题描述
在大规模数据处理中,常遇到的一类问题是,在海量数据中找出出现频率最高的前K个数,或者从海量数据中找出最大的前K个数,这类问题通常称为“top K”问题,如:在搜索引擎中,统计搜索最热门的10个查询词;在歌曲库中统计下载率最高的前10首歌等等。
2. 当前解决方案
针对top k类问题,通常比较好的方案是【分治+trie树/hash+小顶堆】,即先将数据集按照hash方法分解成多个小数据集,然后使用trie树或者hash统计每个小数据集中的query词频,之后用小顶堆求出每个数据集中出频率最高的前K个数,最后在所有top K中求出最终的top K。
实际上,最优的解决方案应该是最符合实际设计需求的方案,在实际应用中,可能有足够大的内存,那么直接将数据扔到内存中一次性处理即可,也可能机器有多个核,这样可以采用多线程处理整个数据集。
本文针对不同的应用场景,介绍了适合相应应用场景的解决方案。
3. 解决方案
3.1 单机+单核+足够大内存
设每个查询词平均占8Byte,则10亿个查询词所需的内存大约是10^9*8=8G内存。如果你有这么大的内存,直接在内存中对查询词进行排序,顺序遍历找出10个出现频率最大的10个即可。这种方法简单快速,更加实用。当然,也可以先用HashMap求出每个词出现的频率,然后求出出现频率最大的10个词。
3.2 单机+多核+足够大内存
这时可以直接在内存中实用hash方法将数据划分成n个partition,每个partition交给一个线程处理,线程的处理逻辑是同3.1节类似,最后一个线程将结果归并。
该方法存在一个瓶颈会明显影响效率,即数据倾斜,每个线程的处理速度可能不同,快的线程需要等待慢的线程,最终的处理速度取决于慢的线程。解决方法是,将数据划分成c*n个partition(c>1),每个线程处理完当前partition后主动取下一个partition继续处理,直到所有数据处理完毕,最后由一个线程进行归并。
3.3 单机+单核+受限内存
这种情况下,需要将原数据文件切割成一个一个小文件,如,采用hash(x)%M,将原文件中的数据切割成M小文件,如果小文件仍大于内存大小,继续采用hash的方法对数据文件进行切割,直到每个小文件小于内存大小,这样,每个文件可放到内存中处理。采用3.1节的方法依次处理每个小文件。
3.4 多机+受限内存
这种情况下,为了合理利用多台机器的资源,可将数据分发到多台机器上,每台机器采用3.3节中的策略解决本地的数据。可采用hash+socket方法进行数据分发。
从实际应用的角度考虑,3.1~3.4节的方案并不可行,因为在大规模数据处理环境下,作业效率并不是首要考虑的问题,算法的扩展性和容错性才是首要考虑的。算法应该具有良好的扩展性,以便数据量进一步加大(随着业务的发展,数据量加大是必然的)时,在不修改算法框架的前提下,可达到近似的线性比;算法应该具有容错性,即当前某个文件处理失败后,能自动将其交给另外一个线程继续处理,而不是从头开始处理。
Top k问题很适合采用MapReduce框架解决,用户只需编写一个map函数和两个reduce 函数,然后提交到Hadoop(采用mapchain和reducechain)上即可解决该问题。对于map函数,采用hash算法,将hash值相同的数据交给同一个reduce task;对于第一个reduce函数,采用HashMap统计出每个词出现的频率,对于第二个reduce 函数,统计所有reduce task输出数据中的top k即可。
4. 总结
Top K问题是一个非常常见的问题,公司一般不会自己写个程序进行计算,而是提交到自己核心的数据处理平台上计算,该平台的计算效率可能不如直接写程序高,但它具有良好的扩展性和容错性,而这才是企业最看重的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29