
大数据时代,数据与信息安全如何完美平衡?
现在我们都在谈信息安全。我看到网友澄清了一个概念,什么叫做信息安全。他把信息安全分成三大类,我觉得很对,在这里分享给大家。
信息层面的信息安全,学校中的信息安全专业,主要致力于通信加密,密码加固等传统的安全领域。
用户层面的信息安全,也就是说用户把信息存储到了你的服务器上,你要怎么样保证用户的隐私不受侵犯。
架构层面的信息安全,就是如何保证信息不丢。
我们逐个来讲。
我们为什么要从HTTP切换到HTTPS?为什么有一天大家都抛弃了HTTP而投向了HTTPS的怀抱?毕竟HTTPS需要消耗比HTTP更大的硬件开销,在架构层面同样需要做出很多的调整。
那是因为HTTP无论对于网络传输的内容,还是对于协议本身信息都没有做过任何的加密,从而使得用户的任何信息在网络中都可能被捕获。这时,我相信有人会讲:那我们是一个内容浏览类的网站,用户并不需要输入信息,那是不是就可以不使用HTTPS了呢?答案是使用HTTP不仅会发生泄漏数据,还会发生注入数据;这也是我们常常提到的流量劫持。
当然,由于HTTPS对于服务器资源的消耗,HTTP也推出了HTTP/2,除了一些新的特性之外,当然也加入了信息加密的功能。另外,密码的加密也是老生常谈,密码的加密是一个听上去简单实际很复杂的事情,归根结底,密码加密是一个需要平衡的事情,如果采用简单加密方式(例如MD5),那么自然也会容易被解密,但是如果采用复杂加密算法,自然也对CPU提出了更高的要求。
用户隐私在近年来被提升到了一个前所未有的高度。大数据时代人人都在做数据分析,却又人人都在做用户隐私。那么如何把握数据分析和用户隐私之间的平衡?
也许我们在很久之前就触犯了“用户隐私”,当我们在电商网站上点击“喜欢”的时候,这个数据来源于“用户隐私”;当我们在搜索引擎上看到“搜索广告”的时候,这个数据也来源于“用户隐私”;甚至我们可以说:如果我们严格地去界定“用户隐私”,我们如今的产品会死掉90%甚至更多。
那么我们到底如何去客观地理解用户隐私?我对隐私的红线是:用户的数据分析是机器可读但是人工不可读的。举个例子:
我们在做用户的垃圾邮件过滤的时候,我们需要对每封邮件抽取特征,其中包括发件人,发件时间以及对于邮件正文内容的结构化抽取,然后通过分类算法对邮件进行分类。
但是我们要注意一点,这个过程,我们对“人”是不可见的,我们会对几千万的数据进行机器处理,我们处理的是宏观上的“大数据”;但是如果我们是通过人去扫描数据库,然后提取出了邮件记录并且去做人眼识别,那么这个行为是侵犯用户隐私的。
再者,是否侵犯用户隐私的一个隐含区分点是“侵犯隐私”之后做了什么?例如我们对搜索记录进行数据分析后为用户推荐了更好的结果,我们说这并不是侵犯数据隐私;但是如果我们对搜索结果进行分析后,将用户的资料提供给了某医院,那么用户隐私就被侵犯了。
一言结之,是否侵犯隐私一定程度上关联与后续的操作是否侵犯到了用户切身的利益。
最后,是否侵犯隐私的一个标准在于我们最终暴露的是用户的什么信息。
我们都知道DMP行业提供API使得DSP可以进行更加精准的广告投放,但是提供什么样的信息成为了关键。如果提供的是用户的消费记录,这个是侵犯隐私的,如果提供的是通过数据挖掘得到的收入水平,那么这个信息也许是不侵犯隐私的。
其实用户隐私是一个很敏感的词,也许这个词天生就与数据挖掘、数据分析互相抵触,法律上也并没有对相关的标准拉过红线,如何把握也许值得我们更深入地探讨。
这一层面的安全说起来比较复杂,我只举两个例子。
第一,一份数据应该存多少份才能保证数据不丢,什么样的存储架构可以较好地平衡数据备份和存储成本之间的平衡?在存储上,我们希望平衡成本和可靠性,例如我们可以通过EC2冗余算法来平衡;再者我们需要多机房的互备来防止数据中心的灾难性事故;但是是否我们就是盲目地将存储成本除以2?这不但对于成本是巨大的消耗,对于网络带宽、磁盘压力也是种巨大的消耗;那么我们可以去折中地拆分数据的冷热分区,以及适当采用廉价磁盘+云备份的模式保证我们整体数据的安全。
第二,在存储架构上对于高安全性信息进行隔离。例如我们将用户的用户名、密码、盐存储在同一个数据库,那么对于入侵者而言,只要拖下来就全部获取了。我们是否应该将彼此依赖的盐、加密密码分离存储,或者采用更高的安全性方案进行存储?是值得我们探讨的事情。
另外,提及一个小的trick:由于MYSQL的各种入侵方法已经成熟的不能再成熟了,所以对于一些公司而言,不妨将一些敏感、又访问压力不大的信息存储于一些相对冷门的数据库中,这样可以在一定程度上加固信息的安全性。
信息安全是一个庞大的领域,其中涉及到很多知识点,但是大多公司都对其没有提及足够的重视,因为信息安全是一个“黑天鹅”事件,以至于大家不愿意在上面投入巨大的精力,也希望随着国内对于安全的越来越重视,更多的公司也能在信息安全领域投入越来越多的注意。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01