
大数据时代的审判:法官还是计算机?
随着社交网络、电子商务和“云计算”的快速发展,人类进入了一个大规模生产、分享和应用数据的时代——大数据时代。2012年3月,美国政府投资2亿美元启动“大数据研究和发展计划”,将大数据研发提升至国家战略层面,视数据为“未来的新石油”。大数据之父维克托预言:“在不久的将来,世界许多现在单纯依靠人类判断力的领域都会被计算机系统所改变甚至取代。”司法审判是一个“单纯依靠人类判断力的领域”,那么在大数据时代,计算机是否会取代法官呢?
一、什么是大数据?
什么是大数据?之前,人们无法处理大量数据,只能从其中随机抽取具有代表性的样本进行分析来推测数据总体的特点。这就是统计学中的随机抽样分析,它走了一条捷径,用“样本”分析代替“总体”分析。不依赖于抽样而直接处理数据全集,是“大数据”的由来及其第一个特点。虽然不加筛选地接受数据全集必然夹杂错误,但海量数据在合成过程中会部分抵消错误数据造成的影响。
大数据的第二个特点是善于开发数据的潜在用途。随机抽样统计分析只能得到预设问题的答案。比如,一项关于“性别”与“吸烟率”的统计调查,所搜集的数据只能用于分析“性别”与“吸烟率”的关系,除此之外别无他用。大数据分析没有预设问题,一端输入数据,另一端会输出若干事件之间的相关程度,这个过程可多次进行、循环开发数据的潜在用途。比如,购物清单的基本用途是统计销售情况等,通过二次开发发现,购买啤酒的消费者通常会购买尿不湿,所以将啤酒和尿不湿就近摆放会显著提高超市销量。
大数据的第三个特点是重相关,轻因果。大数据处理结果只能回答A与B的相关程度,至于A与B是否存在因果关系则如同暗箱一般无从考察,因为没有人能够从繁杂的参数拟合值里面读出因果关系。即,大数据只能揭示外在关联现象——甚至有时,这种现象只是出于偶然——而不能揭示内在运作机制。
二、审判的变与不变之惑
一方面,审判应当变——因为大数据可使审判中的事实认定更加准确和高效,而准确和高效是保障司法正义的重要条件。大数据对人类行为的预测——无论准确性还是效率——都可能超越人类。比如,亚马逊最初组建了一个书评组,他们写书评、推荐新书,这使得公司书籍销量猛增。当时,这个团队是亚马逊竞争力的重要来源,《华尔街日报》将其称为“全美最有影响力的书评家”。后来,亚马逊公司开发出了计算机推荐系统,通过对比测试发现,通过数据推荐产品产生的销量远远超过书评组,由此这个曾经风光一时的书评组被解散。
另一方面,审判应当不变——如果由计算机彻底替代法官,那么历史上那些从审判中衍生出的文明都将岌岌可危。哈佛大学法学教授却伯(Tribe)对数字审判批评道:“关于有罪无罪问题,对特定事件进行量化,不具有政治正当性。”即,审判是一种微妙复杂而神圣庄严的仪式。阿诺德(Arnold)如此刻画审判仪式:“审判如同古代的神迹或寓言剧,他们能剧场化地表达一个社会中不同价值的冲突,这是形式逻辑无法做到的。无论民事审判还是刑事审判都有这一功能,尤其刑事审判,它将给一个社会带来更为重要的感性影响。”所以,审判设置各种程序,不单单是为了一个准确裁判,更是为了体现对“人之为人”的尊重,为了宣示我们这个世界有着怎样的当下以及追求着怎样的未来。虽然由计算机彻底替代法官,审判将可能更快捷、更准确,但在那时,所谓审判只不过是在等待计算机的一个输出而已,人们对审判的参与感和敬畏感将荡然无存,人们也因无法参与对抗、无法理解裁判而倍感痛苦和压抑。
三、审判的变与不变之分
大数据时代,审判变还是不变令人困惑,变与不变都有其理论基础和现实需求,既然一概而论会导致对立僵持,不如分情况讨论。
一方面,在审判过程中,法庭辩论和裁判文书说理必须基于因果关系推论。这样,普通人才能凭借其经验与常识参与审判、理解裁判,不论原被告双方是握手言和“案结事了”还是面红耳赤“对簿公堂”,审判都给予了双方参与审判过程、影响裁判结果的权利。这既能体现审判对“人之为人”的尊重,也能发挥审判对原被告乃至社会公众的教育引导作用。正如伯尔曼(Boehlmann)所言:“法院的审判应当帮助人精神净化,……法律不应只图方便;它应当致力于培养所有有关人员——当事人、旁观者和公众——的法律情感。”因果关系并非大数据所能,所以法官不可能被计算机取代。
另一方面,大数据必将推进司法鉴定领域同一认定技术的发展。什么是同一定认定?比如,一个是犯罪现场血迹,另一个是从犯罪嫌疑人身上提取的血样,如果通过检验发现它们来源于同一客体,则证明现场血迹来源于犯罪嫌疑人。同一认定是审判中事实认定的一部分。最初,同一认定单纯凭借于定性判断(比如笔迹鉴定)。后来,DNA检验建立起数据库,实现了同一认定的定量判断,这给DNA证据带来了“证据之王”的美誉,而其他同一认定技术却因此受到冷落。所以,将同一认定结论进行量化表达已成为同一认定领域的迫切需求和深刻共识,而达成这一愿望的契机就在大数据。大数据时代,若将特定用户的行为、数据、特征进行有效筛选并加以标记和量化,这必将成为同一认定的有力证据。
既然同一认定是事实认定的一部分,为什么不同于事实认定的其他部分,在大数据时代它要积极“应变”呢?凡事皆有例外,同一认定之特殊性使其成为事实认定的唯一例外。大数据只能回答“是什么”而非“为什么”,恰恰,同一认定只关注“外在关联现象”不在乎“内在运行机制”,因为对同一认定而言,“是什么”等同于“为什么”。但除了同一认定,其他事实认定是绝对不能接受“重相关,轻因果”的处理方式的。数据独裁式的暗箱操纵模式不能为人类文明所接受,恰恰很好地诠释了“正义不仅要实现,而且应当以人们看得见的方式加以实现”这一古老谚语。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01