
大数据时代和数据分析需求,统计还沾边吗
大数据时代的悄然到来和计算能力爆炸式增长,让做统计分析的各类人士不禁要重新打量一下自己的技能包,看看是不是很快要被时代浪潮以大浪淘沙的方式清洗掉了。
到底大数据是怎么来的呢?可以用来干什么呢?我们就先拿2012美国总统大选来举个例子看看。比如说我们想预测在2012年11月6日,
我们可以用什么数据来做这个预测呢?最常用的就是民调数据了,通过有选择性的挑选一些可能选民来问他们的倾向。这好像是个传统统计干的事。早在1962年John Tukey就已经开始做了。
这也不难回答,我们还是可以用民调数据了,只不过要在每个州都进行抽样调查,在仔细的分析汇总一下。数据量也就比预测全国的结果时用的多几十倍而已。而且如果知道了那些州两人相差太大,一方就没有必要再大肆花钱做广告了 :)
再做更小范围,更详细的抽样调查也许可行,也就是在加上几十到几百的数据量和相应的花费吧,同时为了提高准确性我们或许还需要收集和用到更多的其他辅助数据,比如各地的人口构成,年龄构成。。。但这个问题如果回答的好的话就可以更有效的投放广告到地方市场了。
(这个数据可视化很灿,还有更酷的在这里,by Robert J. Vanderbei, Professor ofOperations Research and Financial Engineering at Princeton。看,不是统计学家做的吧。)
对这个问题的回答就比较费些劲了,这就牵扯到选战中的精细估计(micro-targeting)了。如果这个估计的可以做的准,对于摇晃选民就可以电话或上门拜访,狂轰滥炸,试图说服了。
那怎么对每个人的投票倾向有个好的估计呢?关于个人很多因素就可以粉墨登场了,比如:党派,年龄,性别,职业,婚姻情况,家庭人数,所开汽车型号,所用手机型号,等等。。。这数据量一下就上去了。再加上这些年随着社交网络的兴起,我们可以在用上个人和其他人的社交关系,朋友活动,发帖转帖等等等。。。一下子数据量级就上去了,也就可以成为大数据了。这些海量数据也让我们有机会回答以前很难想到能够回答的问题。
从这几个关心问题的转变过程中,我们可以看到与问题对应的所需数据收集和分析方法的演化。当我们关心的问题越细节,越多样化,所需要的资源和技术就越多。
问题问了一圈,这些听起来都很是十足的统计分析啊。本应该是统计分析人士应该是施展才华的时代,那为何还会有要被时代淘汰的论调呢?记得Leo Brieman 在1994年Berkeley 统计系毕业典礼上的讲话中提到的:
要知道何去何从,我们必须清楚自己真正所擅长的是什么。统计的核心是什么?需要我们是一流的数学家吗?几乎不用。那是什么呢?成为收集信息,分析信息,并得出结论的专家!这才是我们真正所擅长的。所以我认为,这正是我们统计学家应有的定位,我们的身份危机才会到解决。
在大数据的时代,我们还有资格说我们是“收集信息,分析信息,并得出结论的专家” 吗?如果我们不具备收集和处理大数据所需要的计算能力和技巧,没有数据分析的直觉和经验,如何能得出有说服力和经得起检验的结论呢?
现在讨论我们是否是一流的数学家好像已经没有很么意义。我们不妨问问自己,比起一流的计算机学家,我们还有何优势能更好的“收集信息,分析信息,并得出结论”?当我们数据收集和处理能力越来越强时,大家关心的问题的范围也越来越广,细节要求越来越高,需要的数据越来越多。这个发展趋势不广在商业,计算机信息领域天天看到,我们在科学研究,医疗制药,政府服务等各个方面的能力和雄心都在爆炸式的增长,由此带来的问题和分析需求也在爆炸。
在这形势下,我们可以考虑一下在这些牵扯大数据的问题中,统计又如何能更有效的帮助别人分析问题,得出结论。我们的曾经的神器,极限定理以及其赖以生存的测度理论,是否还有那么神奇和有用呢?与此同时我们欠缺的是什么工具呢?如果我们做的理论问题的假设与实际问题和数据的统计距离太显著,还有没有必要钻这牛角尖?如果我们不和做实际问题的一起工作,一起了解问题的细节,有怎能帮助他们呢?
从另一个角度看,我想在拥有与计算机专业的同事相差不算远的计算机技能的基础上,统计专科在数据收集方法(试验设计,抽样方法等),模型选择以及模型对outlier和模型假设的敏感度,在数据支持下对可能结论的批判型思维,以及对结论的不确定型描述等方面还是很大优势的。不过这些方面的技能好像还都不是简单的靠读理论统计课本能直接学习到或证明数学定理能解决的,它们都是在解决实际问题和数据分析的过程中通过不断犯错误来提高的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26