京公网安备 11010802034615号
经营许可证编号:京B2-20210330
菜鸟也有当家时。作为出炉不久的“数据分析师”,今天被一个朋友问了三个问题,当时比较简单的回答了下,过后想起来,其实这三个问题正是可以用来反思和总结自己的好机会,于是有了这篇日志。
这三个问题是: 1、数据分析的工作当中主要做哪些实质性的工作 2、分析人员比较重要的个人素质 3、用excel进行分析的常用功能有哪些
一、数据分析中有哪些实质性的工作
其实,数据分析从头到尾都是实质性工作。 希望成为数据分析师的人,其实可以轻易的从书籍中或者网络上找到很多方向性的东西,例如数据分析的原则、数据报告的内容构架方法、数据分析产品的形式等等。但实际上,扎进一个行业,深入了解它内部的数据逻辑、管理原则、传播形式,并为此需要准备的数据分析工具和常用方法,才是最重要也是最花时间的,甚至,如果不做这些,“数据分析”这个概念就是一个空谈。 “实质性”的工作可以分为三个主要的板块: 第一,对行业的数据逻辑及数据获取方式的了解。数据从哪儿来的、怎么来的、都包括哪些维度、用什么方式进行采集和统计的、如何标记、如何去重、有什么可能出现误差的地方、误差如何解决……这些全部需要一清二楚。未必要分析师去洞悉程序的逻辑,但必须清楚数据信息的来龙去脉,以及与企业产品的关系,数据的可扩展性,等等。
了解了这些,才能够在进行分析的时候更有效的运用数据。 这其中,对误差的认知和期望极为重要。这不但能够帮助分析师在数据使用时减少错误,更重要的是,当一些数据无法直接得到,或一些观点的逻辑无法直接通过现有数据得出的时候(可能这是相当普遍的状况),分析师能够知道如何设计数据获取方法和分析方法来有效的得到结论而不出错。
第二,对工具的熟悉。
不同的数据量级和数据结构,使用的软件工具不尽相同。相同的工具,因为分析内容不同,常用的功能也不尽相同。要依据自己工作的需求来使用和学习。——听起来是废话是吧。对的,就是这样,因为这是很个性化的事。最好的做法就是确定软件工具后找本书,啃,努力啃,花时间啃。然后向前请教设计师,向后请教数据挖掘专家,上游下游的工具都接触一些,不会错。 第三,对出口的理解。数据分析是为了什么,这直接决定数据分析的策略和逻辑。用于产品传播、用于向上级汇报、用于总结工作、用于研究竞品、用于PR造势、用于媒体报道……虽然是同样的基础数据,但关注点和分析方法截然不同。分析师要在工作中慢慢理解每一个出口对数据的需求,这将指引咱们做出最有用的分析。
这里再插进《深入浅出数据分析》里的一句话:“作为数据分析师,如果只做了数据传递的工作——没出息。”要有观点。再说一遍,要,有,观,点。 上述三点都是要动脑子花时间磨的,和切实的工作内容非常相关,因此,它们一旦落于纸面(长微博?)也成了空谈了……所以,憧憬昏析师的亲们,这种问题听两句就够啦,谁说的也别太信。去做才是王道! 二、重要的个人素质 也是三点:好奇心、想象力、耐性。 好奇心就是要问为什么呗。数据突然高了为什么,出现无法识别的数据为什么,为什么会出错……不把任何数据的变化(或者不变)当“正常”。——嗯,做个敏感又神经兮兮的昏析师吧,这个世界需要你,少年。 想象力——我觉得这个是最难的,因为这个想象力不是天马行空的那种,而是了解了行业运营和管理规则之后(不了解?看行业报告吧,看竞争对手吧,看先进经验吧,看招股说明书看上市公司季报吧,度娘去吧,知乎去吧……),还能跳出框架来进行观察的能力。统计学中那些概念,手边备本书谁都能说出一二,但怎么用概率去描绘用户行为,怎么用同比环比来测算行业变化,怎么用标准化的方法来衡量产品的竞争力……分析师必须想出新奇的玩法来。真的好难。但一旦突破一点就是大进步,得坚持啊…… 耐性。不用说了吧,耐性就是,就算要吐了,还是要回去最后确认一眼是否没问题了。强迫症的同学可能比较有优势吧~哈哈。不强迫症的,就咬碎银牙(什么 ……
三、Excel的常用功能 排序、筛选和简单的计算都不用说了。
此外个人来讲数据透视表最最常用,其次是一些查询和匹配的函数。Excel是超级强大的工具,要相信,每个数据处理的需求,Excel基本都有比你会的那种更快捷的处理方案,如果不是一样快捷的话。这个会是长期功课…… 所以这就是简单的总结啦。要做靠谱的昏析师嗯!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16