京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS统计软件:帮你试验和检验
在质量管理中,正交试验和参数检验是质量管理者经常运用的两种方法。其中,正交试验一方面用于在产品设计阶段选择最优的设计参数配合,尽量降低成本;另一方面用于在生产过程中采用最优的工艺方案,以能达到优质、高产、低耗的目的。参数检验则在进货检验、产品验定、工艺检查等过程中借用所选样本的产品的特性对其所在整体进行假设检验,以确定整体的情况。
然而,随着工艺的发展和产品复杂程度的提高,正交试验中的指标和因素也必将随着增加,计算过程也必将变得更加繁杂。而假设检验的计算分析过程必然是复杂的。因此,有必要利用计算机软件进行这两方面的工作,以便更好地完成企业质量管理工作。质量管理的设计实验
本文用一个实例介绍SPSS统计软件对正交实验设计的数据分析过程。
某轴承厂生产的轴承内套圈硬度不均匀,热处理淬火QC小组决定通过正交实验来优选淬火工艺参数,提高内套圈硬度均匀的合格率。经过分析,确定“淬火加热温度”、“淬火加热保温时间”、“回火加热温度”和“回火保温时间”为造成硬度不均匀的主要原因。根据以往经验,对4个因素各取3个水平:淬火加热温度分别为:835、845、855摄氏度;淬火加热保温时间分别为:20、15、10分钟;回火温度为:160、170、180摄氏度;回火保温时间为:2、2.5、3小时。
第一步,建立SPSS的数据集文件。
第二步,分析过程如下:
①单击Analyze菜单,选择GeneralLinearModels项。从中打开多因子方差分析“Univari?鄄ate”对话框,将变量“合格率”选入“DependentVariable”框,将其他变量选入“FixedFactor(s)”。
②点击“Options…”按钮,打开“Univariate:Options”对话框,将4个变量分别依次选入“Displaymeansfor”框内,点击“continue”。
③点击“Model…”按钮,打开“Univariate:Model”对话框,选择“custom”,将4个变量分别依次选入“Model”框内,点击“continue”。
④点击“OK”,统计分析结果如表1、表2所示。由表1的“Estimated MarginalMeans”单因素统计量表中“TypeIII Sumofsquares”列的数据可以看出:淬火加热温度是最重要的因素,其次依次分别是回火保温、淬火保温和回火温度;通过对表2各分表中的“Mean”列的数据比较,可知我们应该选择每个因素的最佳水平分别为:淬火加热温度选择水平3,即855摄氏度;回火保温时间选择水平1,即2小时。另外,点击“Univariate”中对话框其他按钮以及在“Univari?鄄ate:Options”对话框和“Uni?鄄variate:Model”对话框内,均可以设置更多统计分析要求。样本信息的参数检验
在实际的生产、检验过程中,并不是对全部产品的特性进行测量,而是借助对所选择样本产品特性的测量,对样本所在的整体进行假设检验,以确定整批产品合格与否,从而做出决策。SPSS软件的参数检验,主要是要通过相伴概率值与显著性水平的比较,来决定拒绝还是接受原假设。在此,我们以最常用的t检验来说明SPSS在参数检验中的应用。
t检验可以分为单样本t检验、两独立样本t检验和配对样本t检验。下面将以单样本t检验为例简单介绍SPSS在参数检验中的用法,两独立样本t检验和配对样本t检验分别由“Analyze”菜单中“comparemeans”的“Indepen?鄄dent-SamplesT Test”项和“Paired-Samples TTest”项来完成,操作与单样本t检验类同,在此不进行详细叙述。
例:某电器厂生产一种云母片,要求厚度均值为13mm,今在某天生产的云母片中随机抽取26片。现在我们检验今天生产的云母片厚度均值是否与规定的质量分布要求有无显著差异(α=0.05)。
第一步,建立SPSS的数据文件。
第二步,单击“Analyze”菜单中“compare means”的“One Sam?鄄plesTTest”项,打开“One-Sam?鄄ple TTest”对话框,将变量“厚度”选入“Testvariable(s)”框内,表示需要对之进行分析;在“Testval?鄄ue:”中填入总体均值13,点击“OK”。
第三步,点击“Options”按钮,打开“One-Sample TTest:Op?鄄tions”对话框,在“ConfidenceIn?鄄terval”内输入95,表示置信区间为95%;“MissingValues”是对缺省值的处理,在此选择“Excludecases analysisbyanalysis”,表示具体分析用到的变量有缺失值才除去该记录,点击“Continue”按钮。
最后,点击“OK”,就能够得出检验结果.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27