
SPSS统计软件:帮你试验和检验
在质量管理中,正交试验和参数检验是质量管理者经常运用的两种方法。其中,正交试验一方面用于在产品设计阶段选择最优的设计参数配合,尽量降低成本;另一方面用于在生产过程中采用最优的工艺方案,以能达到优质、高产、低耗的目的。参数检验则在进货检验、产品验定、工艺检查等过程中借用所选样本的产品的特性对其所在整体进行假设检验,以确定整体的情况。
然而,随着工艺的发展和产品复杂程度的提高,正交试验中的指标和因素也必将随着增加,计算过程也必将变得更加繁杂。而假设检验的计算分析过程必然是复杂的。因此,有必要利用计算机软件进行这两方面的工作,以便更好地完成企业质量管理工作。质量管理的设计实验
本文用一个实例介绍SPSS统计软件对正交实验设计的数据分析过程。
某轴承厂生产的轴承内套圈硬度不均匀,热处理淬火QC小组决定通过正交实验来优选淬火工艺参数,提高内套圈硬度均匀的合格率。经过分析,确定“淬火加热温度”、“淬火加热保温时间”、“回火加热温度”和“回火保温时间”为造成硬度不均匀的主要原因。根据以往经验,对4个因素各取3个水平:淬火加热温度分别为:835、845、855摄氏度;淬火加热保温时间分别为:20、15、10分钟;回火温度为:160、170、180摄氏度;回火保温时间为:2、2.5、3小时。
第一步,建立SPSS的数据集文件。
第二步,分析过程如下:
①单击Analyze菜单,选择GeneralLinearModels项。从中打开多因子方差分析“Univari?鄄ate”对话框,将变量“合格率”选入“DependentVariable”框,将其他变量选入“FixedFactor(s)”。
②点击“Options…”按钮,打开“Univariate:Options”对话框,将4个变量分别依次选入“Displaymeansfor”框内,点击“continue”。
③点击“Model…”按钮,打开“Univariate:Model”对话框,选择“custom”,将4个变量分别依次选入“Model”框内,点击“continue”。
④点击“OK”,统计分析结果如表1、表2所示。由表1的“Estimated MarginalMeans”单因素统计量表中“TypeIII Sumofsquares”列的数据可以看出:淬火加热温度是最重要的因素,其次依次分别是回火保温、淬火保温和回火温度;通过对表2各分表中的“Mean”列的数据比较,可知我们应该选择每个因素的最佳水平分别为:淬火加热温度选择水平3,即855摄氏度;回火保温时间选择水平1,即2小时。另外,点击“Univariate”中对话框其他按钮以及在“Univari?鄄ate:Options”对话框和“Uni?鄄variate:Model”对话框内,均可以设置更多统计分析要求。样本信息的参数检验
在实际的生产、检验过程中,并不是对全部产品的特性进行测量,而是借助对所选择样本产品特性的测量,对样本所在的整体进行假设检验,以确定整批产品合格与否,从而做出决策。SPSS软件的参数检验,主要是要通过相伴概率值与显著性水平的比较,来决定拒绝还是接受原假设。在此,我们以最常用的t检验来说明SPSS在参数检验中的应用。
t检验可以分为单样本t检验、两独立样本t检验和配对样本t检验。下面将以单样本t检验为例简单介绍SPSS在参数检验中的用法,两独立样本t检验和配对样本t检验分别由“Analyze”菜单中“comparemeans”的“Indepen?鄄dent-SamplesT Test”项和“Paired-Samples TTest”项来完成,操作与单样本t检验类同,在此不进行详细叙述。
例:某电器厂生产一种云母片,要求厚度均值为13mm,今在某天生产的云母片中随机抽取26片。现在我们检验今天生产的云母片厚度均值是否与规定的质量分布要求有无显著差异(α=0.05)。
第一步,建立SPSS的数据文件。
第二步,单击“Analyze”菜单中“compare means”的“One Sam?鄄plesTTest”项,打开“One-Sam?鄄ple TTest”对话框,将变量“厚度”选入“Testvariable(s)”框内,表示需要对之进行分析;在“Testval?鄄ue:”中填入总体均值13,点击“OK”。
第三步,点击“Options”按钮,打开“One-Sample TTest:Op?鄄tions”对话框,在“ConfidenceIn?鄄terval”内输入95,表示置信区间为95%;“MissingValues”是对缺省值的处理,在此选择“Excludecases analysisbyanalysis”,表示具体分析用到的变量有缺失值才除去该记录,点击“Continue”按钮。
最后,点击“OK”,就能够得出检验结果.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18