
P2P公司用大数据扩大企业边界_数据分析师考试
互联网金融界最火的名词非P2P莫属,伴随着平台数量和类型的快速增长,业界对于P2P业务未来的成长性和发展性,也不禁产生了更多的期待。“大数据”一词,近两年与P2P行业联系紧密,前沿的互联网科技不仅为金融行业带来了更多活力,也帮助P2P行业实现快速成长。
实际上,互联网大数据技术对于P2P公司扩张企业边界,同样具有重要意义。 人言“它山之石可以攻玉”,阿里今年“双十一”物流配送体系在数据的流转和分享模式方面创新,或许可以给我们一些启发。
为应对飙升的物流运量,“双十一”期间,阿里旗下菜鸟网络通过大数据技术,精确计算出了各家快递公司每条线路每天的包裹量,在交易发生之前,很多货物都已能够提前下沉到客户附近的网点,从而极大提升了物流效率。而经过实际产生的数据对比,该系统提供的预测数据准确度高达90%左右。
阿里对于“大数据”技术的应用,不仅实现了精确预估“用户行为”,更在业务模式上实现了颠覆式创新,即在交易产生之前便已然准备好商品和服务,在未来,则更有可能创造出“用户需求”,通过利用大数据技术深入挖掘用户需求,提前为其量身打造产品与服务,扩大了业务和企业边界。
以往对企业边界的讨论,都会参考威廉姆森和科斯的交易成本理论,按照科斯的理论,企业边界决定于交易成本与管理费用的对比。但是在互联网时代,一个企业的业务类型和企业边界,似乎更决定于数据能够流转到和真正起效的边界。那么对P2P行业而言,大数据又能从何种角度帮助P2P公司进行“开疆扩土”呢?
首先,在信审风控方面,互联网大数据技术让信审流程的准确性,高效性,透明度都得到了极大提升。作为信息交流的平台,对借款人资格的审核和把关,也就是进行信用审核,是P2P平台的重要职责之一。P2P行业对借款人信息考察的维度主要包括个人基本信息、教育及技能信息、工作信息、资产信息以及信用信息等,随着借款人数量的增多,身份类型的丰富,变量也变得越来越多,这就要求平台具备持续搜集数据,高效处理数据,以及不断完善的信审模型的能力。
互联网大数据技术的进步,让P2P平台有能力通过互联网抓取更为丰富和精确的信息,用户在互联网上的社交行为信息,包括其在微博、微信、论坛的活跃程度,发言数量,都可以被采集并成为个人信用评估的重要参考,这种通过数据系统建立严密高效的信审模型,是以往的线下人工审核模式所无法企及的。
近期,宜信宜人贷推出了“极速模式”借款服务,通过对互联网大数据技术的准确把控,宜信宜人贷建立了一套高效运行的大数据信审系统,借款人通过“极速模式”提交借款申请,在10分钟内就能快速完成审核。宜信宜人贷“极速模式”刷新了业内借款服务的新水平,在借款服务领域实现了极大的突破。
不断分析和挖掘用户需求,是企业进行产品和服务创新的重要支撑,传统的线下调研模式,要耗费大量的人力物力,而通过大数据来积累和分析用户的习惯和偏好,按照用户的实际需求对产品和服务进行改进和优化,能够将生产方与用户紧密联系起来。数据将产品和服务背后的用户变得生动鲜活,用户在哪里?喜欢什么?需要什么?对P2P行业而言,在业务高度同质化的现状下,不断寻找业务创新点显得尤为重要,显然,通过大数据技术的协助,P2P公司能够得到用户的即时反馈,从而不断激发对于产品和服务的创新思考。
另一方面,P2P行业目前在垂直领域的竞争还处于“蓝海”阶段,如宜信宜人贷针对程序员群体的借款服务“码上贷”,等针对细分人群定制的服务,还尚不算多,针对细分人群的个性化服务将成为未来行业的发展趋势。通过大数据技术对人群特征和需求进行搜集、描写和归纳,能够让P2P平台更快找准产品和服务定位,从而丰富业务种类,从而扩大公司边界。
更创新的商务模式,更高效的业务流程,更具前瞻性和个性的产品和服务永远是所有企业的追求,P2P行业的发展也依托于每一家平台对自身产品和服务的不断创新,以及对于行业内涵的不断扩展,如何在快速变化的时代,找到自己的位置,在站稳脚跟的基础上稳健扩张企业边界,是每一个P2P平台都应该思考的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07