京公网安备 11010802034615号
经营许可证编号:京B2-20210330
P2P公司用大数据扩大企业边界_数据分析师考试
互联网金融界最火的名词非P2P莫属,伴随着平台数量和类型的快速增长,业界对于P2P业务未来的成长性和发展性,也不禁产生了更多的期待。“大数据”一词,近两年与P2P行业联系紧密,前沿的互联网科技不仅为金融行业带来了更多活力,也帮助P2P行业实现快速成长。
实际上,互联网大数据技术对于P2P公司扩张企业边界,同样具有重要意义。 人言“它山之石可以攻玉”,阿里今年“双十一”物流配送体系在数据的流转和分享模式方面创新,或许可以给我们一些启发。
为应对飙升的物流运量,“双十一”期间,阿里旗下菜鸟网络通过大数据技术,精确计算出了各家快递公司每条线路每天的包裹量,在交易发生之前,很多货物都已能够提前下沉到客户附近的网点,从而极大提升了物流效率。而经过实际产生的数据对比,该系统提供的预测数据准确度高达90%左右。
阿里对于“大数据”技术的应用,不仅实现了精确预估“用户行为”,更在业务模式上实现了颠覆式创新,即在交易产生之前便已然准备好商品和服务,在未来,则更有可能创造出“用户需求”,通过利用大数据技术深入挖掘用户需求,提前为其量身打造产品与服务,扩大了业务和企业边界。
以往对企业边界的讨论,都会参考威廉姆森和科斯的交易成本理论,按照科斯的理论,企业边界决定于交易成本与管理费用的对比。但是在互联网时代,一个企业的业务类型和企业边界,似乎更决定于数据能够流转到和真正起效的边界。那么对P2P行业而言,大数据又能从何种角度帮助P2P公司进行“开疆扩土”呢?
首先,在信审风控方面,互联网大数据技术让信审流程的准确性,高效性,透明度都得到了极大提升。作为信息交流的平台,对借款人资格的审核和把关,也就是进行信用审核,是P2P平台的重要职责之一。P2P行业对借款人信息考察的维度主要包括个人基本信息、教育及技能信息、工作信息、资产信息以及信用信息等,随着借款人数量的增多,身份类型的丰富,变量也变得越来越多,这就要求平台具备持续搜集数据,高效处理数据,以及不断完善的信审模型的能力。
互联网大数据技术的进步,让P2P平台有能力通过互联网抓取更为丰富和精确的信息,用户在互联网上的社交行为信息,包括其在微博、微信、论坛的活跃程度,发言数量,都可以被采集并成为个人信用评估的重要参考,这种通过数据系统建立严密高效的信审模型,是以往的线下人工审核模式所无法企及的。
近期,宜信宜人贷推出了“极速模式”借款服务,通过对互联网大数据技术的准确把控,宜信宜人贷建立了一套高效运行的大数据信审系统,借款人通过“极速模式”提交借款申请,在10分钟内就能快速完成审核。宜信宜人贷“极速模式”刷新了业内借款服务的新水平,在借款服务领域实现了极大的突破。
不断分析和挖掘用户需求,是企业进行产品和服务创新的重要支撑,传统的线下调研模式,要耗费大量的人力物力,而通过大数据来积累和分析用户的习惯和偏好,按照用户的实际需求对产品和服务进行改进和优化,能够将生产方与用户紧密联系起来。数据将产品和服务背后的用户变得生动鲜活,用户在哪里?喜欢什么?需要什么?对P2P行业而言,在业务高度同质化的现状下,不断寻找业务创新点显得尤为重要,显然,通过大数据技术的协助,P2P公司能够得到用户的即时反馈,从而不断激发对于产品和服务的创新思考。
另一方面,P2P行业目前在垂直领域的竞争还处于“蓝海”阶段,如宜信宜人贷针对程序员群体的借款服务“码上贷”,等针对细分人群定制的服务,还尚不算多,针对细分人群的个性化服务将成为未来行业的发展趋势。通过大数据技术对人群特征和需求进行搜集、描写和归纳,能够让P2P平台更快找准产品和服务定位,从而丰富业务种类,从而扩大公司边界。
更创新的商务模式,更高效的业务流程,更具前瞻性和个性的产品和服务永远是所有企业的追求,P2P行业的发展也依托于每一家平台对自身产品和服务的不断创新,以及对于行业内涵的不断扩展,如何在快速变化的时代,找到自己的位置,在站稳脚跟的基础上稳健扩张企业边界,是每一个P2P平台都应该思考的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06