
大数据应用号角正式吹响 建筑业信息化_数据分析师考试
建筑行业是最需要被互联网变革的行业,因为这是最大的大数据行业之一,却也是当前最缺少大数据的行业。
日前,国务院发布《关于运用大数据加强对市场主体服务和监管的若干意见》(下称《意见》),正式吹响大数据应用号角。对已经身处BIM和“互联网+”浪潮的建筑行业而言,如何处理和用好海量的工程相关数据,是实现信息化变革的最关键因素。
《意见》提出,要进一步健全创新体系,鼓励相关企业、高校和科研机构开展产学研合作,推进大数据协同融合创新,加快突破大规模数据仓库、非关系型数据库、数据挖掘、数据智能分析、数据可视化等大数据关键共性技术,支持企事业单位开展大数据公共技术服务平台建设。
建筑行业是我国的支柱产业,建筑全生命周期内会产生海量数据。2014年,我国在建项目达60余万个,其中房屋新开工面积18亿平方米,而每个项目都会涉及建设方、总包方、分包方、材料设备厂商、劳务公司、设计院、监理方、政府部门等,在此过程中会产生大量数据。有公开资料显示,平均每个建筑生命周期大约产生10T级别数据,相当于630万部《红楼梦》。
在从事工程项目管理多年的国有建筑企业某负责人王理看来,现阶段建筑企业还缺乏对信息化的有效应用,无法通过传统方法管理海量工程数据,从而实现精细化管理。管理的支撑是数据,项目管理的基础就是工程基础数据的管理,及时、准确地获取相关工程数据就是项目管理的核心竞争力。建筑行业大数据应用和BIM普及的核心,是基于企业核心数据的积累、存储和管理。
“现在很多国外公司想进入国内做建筑行业信息化,目前国内做得很有规模、很深入的公司也比较少,但很多企业都想借大数据和云计算这些新技术变革的机会努力做一些创新。”有行业分析师表示。
不过,王理分析认为,对于建筑行业的大数据挖掘来说,存在天然的行业壁垒。“首先是数据维度比较复杂,简单来看,既有建筑类数据,如建筑造价类数据、建筑结构类数据、建筑施工工艺类数据、建筑材料类数据,也有管理类数据;其次是我国的建筑法律法规和对专业的要求与国外不一样,各省市的建筑行业法律法规都不一样。在这种情况下,建筑行业的大数据挖掘成了一个高门槛行业。”他说。
信息增值改变行业“玩儿法”
虽然入门很难,但是大数据对建筑行业的改变非常大。《意见》也指出,要充分认识运用大数据加强对市场主体服务和监管的重要性。
以传统的工程造价咨询公司为例,拥有100个造价人员的公司至少会有两个人专门做询价,即找材料价格,而一个咨询师的年成本约30万元,两个人就是60万元。从收集材料厂商数据的成本来看,收集一个厂商的信息,大约一年需要140元,而目前国内的建筑材料生产厂商有约79万家,要把这79万家的材料信息收集回来,成本是非常高的。
信息增值改变行业“玩儿法”
“所以针对这一情况,我们努力做的事情就是把这些生产厂商的数据收集回来,结合一系列机器学习、数学建模、自然语言处理、搜索引擎等技术,把信息精细加工以后,提供给用户。这既可以节省很多人力成本,也可以在做招标、投标和审核时的预算中直接载入做过精加工的数据,方便进行各种调度。”大数据专家付永晖说。
工程造价信息化是行业趋势,企业数据库建设就是排头兵。有业内专家指出,通过BIM可以更好地处理造价管理工作,“多、快、好、省、准、全”地获取材价数据,构建企业核心数据库并进行有效管理。“这些都是工程造价行业从业者每天都要面对的问题,以前他们需要通过大量时间与人脉积累,去了解庞杂的产品造价和工程管理信息,而BIM和‘互联网+’能将一切都整合到网上,实现阳光、透明的采购流程,更好地搭建核心材价数据库、指标数据库、项目数据库、供应商数据库等。”他说。
王理则直言,基于互联网的信息增值服务改变了行业玩法。这种信息化、扁平化、互动化、可视化、精细化的增值服务,延伸了工程项目预决算管理的产业链,提升了建筑行业的产业链价值,呈现出新常态背景下从要素驱动、投资拉动向创新驱动、服务带动转变的特征。
信用建设必须以大数据为支撑
《意见》提出,要运用大数据加强和改进市场监管。建立国家统一的信用信息共享交换平台,整合金融、安全生产、质量监管等领域信用信息,实现各地区、各部门信用信息共建共享。充分发挥行政、司法、金融、社会等领域的综合监管效能,在招标投标、国有土地出让、企业上市、劳动用工、环境保护等方面,建立跨部门联动响应和失信约束机制。
事实上,去年发布的《关于推进建筑业发展和改革的若干意见》已经明确,要探索开展工程建设企业和从业人员的建筑市场和质量安全行为评价办法,逐步建立“守信激励、失信惩戒”的建筑市场信用环境。鼓励有条件的地区研究、试行开展社会信用评价,引导建设单位等市场各方主体通过市场化运作综合运用信用评价结果。国家发改委副主任连维良曾表示,信用建设必须以大数据为支撑,以大数据为支撑的信用建设手段,对于加强对市场主体的服务和监管具有非常重要的作用。
据了解,浙江、湖南、安徽、山东等多地已建立或筹建工程建设信用大数据平台、建筑市场数据库等,并定期发布失信违约“黑名单”。我国建筑市场中各方主体普遍存在信用缺失情况,诚信“短板”问题突出。一些企业不按工程建设程序办事,或违法转包工程,或关键技术岗位人员不到岗履职,或在施工中偷工减料,导致质量问题和安全隐患等。而通过大数据平台动态记录信息,通过建筑市场管理和施工现场监管有效联动,有助于更好地实现“数据一个库、监管一张网、管理一条线”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01