京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的初期大家都在拼什么?拼集群规模,节点数量,拼存储能力,拼调度能力。此时企业展示技术能力的时候一般都会强调什么集群规模过万,存储能力过百P,每天执行数十万的job。
在大数据初期,人们基本不太在意,数据的存储成本,执行性能和响应速度。更在意的的是构建初始的大数据环境,让数据更大,以及对大数据的掌控能力。
随着这方面的技术越来越成熟,人们会对数据的时效性,查询响应时间要求越来越高。在这个时期出现了许多预处理技术,比方说storm,hbase等,以及一些对性能优化的一些处理方法比如说基于嵌套列存储技术的google dremel,apache drill,impala等,但这些仅仅能在某一领域满足人们的时效性要求,通用性不强,只能说是预处理技术和列存储,并不能满足通用的低延迟的即席查询要求。
目前开源的mdrill技术以及腾讯自主研发的hermer目前的索引的索引量只能达到千亿规模,万亿规模以上的成功案例还没有,纠其原因有两点
其一是索引存储在本地硬盘,他对容灾,异常的恢复的处理逻辑,进程异常后的任务迁移成本制约了其索引规模的大小。
其二是受限其调度系统的实现,管理的事情太多,既要管理索引,又要管理心跳,也要维护容灾,导致调度系统的机器规模上不来。
索引管理,容灾心跳管理,计算资源管理三者将来必须分离。否则万亿以上的目标别想。
其三内嵌过多的来源代码,比如说jstorm,solr等等,他们的架构制约了拓展性。
随着yarn技术的趋于成熟以及在hdfs中的索引技术的成熟和性能的提升,低延迟的万亿规模的索引技术有了希望。
第一,yarn分配的资源不在像之前那样还要维护索引状态,存储位置,仅仅负责对索引的检索和写入,单独的索引管理将以服务的形式独立出来,yarn的资源不在固定的处理某个索引,而是听从索引管理服务的安排。这样的放权也给外部更多的灵活的空间
第二,索引与editlog直接存放在hdfs,容灾交给成熟的hdfs去管理,也不要再说索引在hdfs中性能差了,那是过去,现在性能还是不错的。
第三,独立的索引管理,让索引更灵活。
将索引从原有的进程中抽出,每个进程可以处理多个索引,提升进程的利用率。单独的索引管理,针对不同的业务,更容易灵活的变通。
第四,基于这个版本的大索引不在像之前单独对外提供服务,会更加的开放,对外提供了很多拓展功能,现有的hive以及spark可以很方便的通过类似 inputformat的方式直接使用大索引。同时可以方便的将hdfs,hbase,hive,实时的消息队列比如说kafka,metaq等系统方便的导入导出。
试想下,spark在利用上这个大索引后,一个几万亿的数据,几秒钟就返回结果,而且还支持了很多的复杂查询,是不是很值得期待呢。
同志们,我们尝试的已经够多,是时候开启新的大索引技术之路,求更多的战友组队。
“梦想还是要有的”,大索引未来我看好你哦。(文章来源:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01