
大数据的初期大家都在拼什么?拼集群规模,节点数量,拼存储能力,拼调度能力。此时企业展示技术能力的时候一般都会强调什么集群规模过万,存储能力过百P,每天执行数十万的job。
在大数据初期,人们基本不太在意,数据的存储成本,执行性能和响应速度。更在意的的是构建初始的大数据环境,让数据更大,以及对大数据的掌控能力。
随着这方面的技术越来越成熟,人们会对数据的时效性,查询响应时间要求越来越高。在这个时期出现了许多预处理技术,比方说storm,hbase等,以及一些对性能优化的一些处理方法比如说基于嵌套列存储技术的google dremel,apache drill,impala等,但这些仅仅能在某一领域满足人们的时效性要求,通用性不强,只能说是预处理技术和列存储,并不能满足通用的低延迟的即席查询要求。
目前开源的mdrill技术以及腾讯自主研发的hermer目前的索引的索引量只能达到千亿规模,万亿规模以上的成功案例还没有,纠其原因有两点
其一是索引存储在本地硬盘,他对容灾,异常的恢复的处理逻辑,进程异常后的任务迁移成本制约了其索引规模的大小。
其二是受限其调度系统的实现,管理的事情太多,既要管理索引,又要管理心跳,也要维护容灾,导致调度系统的机器规模上不来。
索引管理,容灾心跳管理,计算资源管理三者将来必须分离。否则万亿以上的目标别想。
其三内嵌过多的来源代码,比如说jstorm,solr等等,他们的架构制约了拓展性。
随着yarn技术的趋于成熟以及在hdfs中的索引技术的成熟和性能的提升,低延迟的万亿规模的索引技术有了希望。
第一,yarn分配的资源不在像之前那样还要维护索引状态,存储位置,仅仅负责对索引的检索和写入,单独的索引管理将以服务的形式独立出来,yarn的资源不在固定的处理某个索引,而是听从索引管理服务的安排。这样的放权也给外部更多的灵活的空间
第二,索引与editlog直接存放在hdfs,容灾交给成熟的hdfs去管理,也不要再说索引在hdfs中性能差了,那是过去,现在性能还是不错的。
第三,独立的索引管理,让索引更灵活。
将索引从原有的进程中抽出,每个进程可以处理多个索引,提升进程的利用率。单独的索引管理,针对不同的业务,更容易灵活的变通。
第四,基于这个版本的大索引不在像之前单独对外提供服务,会更加的开放,对外提供了很多拓展功能,现有的hive以及spark可以很方便的通过类似 inputformat的方式直接使用大索引。同时可以方便的将hdfs,hbase,hive,实时的消息队列比如说kafka,metaq等系统方便的导入导出。
试想下,spark在利用上这个大索引后,一个几万亿的数据,几秒钟就返回结果,而且还支持了很多的复杂查询,是不是很值得期待呢。
同志们,我们尝试的已经够多,是时候开启新的大索引技术之路,求更多的战友组队。
“梦想还是要有的”,大索引未来我看好你哦。(文章来源:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01