京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析助推审计信息化_数据分析师考试
全球已然进入大数据时代。总量大(Volume)、种类多(Variety)和速度快(Velocity),数据的3V特征促使每个行业都推动着自身信息化发展,而四川省审计厅在面临被审计单位的发展变化时,也积极地应对时代的变革,创新审计方法手段,努力推动审计工作的转型升级
审计工作的出路在信息化。省审计厅对大数据审计高度重视,2014年以来,以“金审工程”建设为基础,加强制度规范,创新审计方式,培养人才队伍,全面推进四川审计信息化工作,并且从省本级做起,搞好全省数字式审计的顶层设计。
建立长效机制
数据归集分析由制度说了算
去年,全国审计工作会议对大数据审计提出三点要求:数据归集要全、数据分析要深、技术手段要新。为了更好地达到大数据审计的发展要求,审计厅组建了一个全新的部门——电子数据审计处。该部门依照这三点要求发挥职能,负责电子数据的归口管理,组织开展跨行业、跨部门、跨地区的数据分析和利用,并组织开展联网审计和省直各部门(单位)电子信息系统审计等相关工作。
审计厅相关负责人告诉记者,目前数据的收集方式有两种,一是结合审计项目的进行对所涉及数据进行收集存储,另一种是根据需要制定数据采集计划主动对国土、社保等与审计相关的重要数据进行收集、整理。数据采集后按行业、按单位、按年度,以目录的形式分门别类地储存,方便各个审计项目的调用和分析。目前,审计数据中心已经收集了包括全省地税、社保、工商等8个部门共计1.5TB数据。
数据的收集是为数据分析做准备,审计人员通过数据分析可以快速锁定疑点、定向排查和查实查透。“因为数据具有普遍联系性,所以我们采用的方法主要是进行数据比对。”电子数据审计处负责人解释道,比如对于医保基金的审计,审计人员就需要将医院系统与医保中心的相关数据进行对比,核实两者是否相匹配。
在全省保障性安居工程跟踪审计中,审计组开展了跨地区、跨行业的数据对比分析。一是将收集的部分市、县10多万条人员信息数据与房管部门商品房信息进行对比,发现上千名购有商品房、超过规定标准的人员,依然在享受保障性住房。随后,将其与同期养老保险缴费基数、公积金缴费基数、个人所得税应税数以及机动车辆登记信息进行对比,查处了骗取或违规享受保障性住房,骗取或违规领取货币补贴等问题。审计除责成相关部门整改外,对典型的违纪违规问题,已移送当地纪检监察部门处理。
除了不断强化对数据的使用、分析,省审计厅还高度重视数据的安全管理。数据收集、分析的具体操作流程非常严谨规范,如跨地区、跨部门、跨行业的数据收集必须发出正式公函。而数据分析查出的疑点,审计厅也会给被审计单位发出建议函,对方将在1-2个月内将核定结果反馈审计厅,整个收集和分析过程,都要保证数据的绝对安全。审计厅还专门出台了《四川省审计厅电子数据安全管理办法(试行)》和《四川省审计厅现场审计数据管理办法(试行)》,形成了数据安全控制长效机制。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11