
大数据:一场骗局还是一次新的商业变革_数据分析师考试
大数据会是一场概念的骗局么?近期这样的讨论在网上随着大数据的话题而不断涌现出来。其实大数据并不是一项全新的技术,它的本质表现在数据的形态更为复杂,增长的速度更快和交互的频率更高。
如何对具备这样特征的数据集群进行管理和使用,是区别于传统数据应用的主要特点。更为重要的一点是:当前的技术将大数据应用的成本降低到了中小型企业也可以使用的阶段,在有关大数据的话题讨论中,这一点也是备受关注和认可的。 伴随着传统的商业智能系统向纵深应用的拓展,商业决策已经越来越依赖于数据。然而,传统的商业智能系统中用于分析的数据,大都是企业自身信息系统中产生的运营数据,这些数据大都是标准化、结构化的。
事实上,这些数据只占到了企业所能获取的数据中很小的一部分,还有更加广泛的数据是存在于Social、Mobile、电子商务等应用中的非结构化数据。 企业用以分析的数据越全面,结果就越接近于真实。大数据分析意味着企业能够从这些新的数据中获取新的洞察力,并将它与已知业务的各个细节相融合。
微软亚太研发集团服务器与开发工具事业部,中国云计算创新中心商务战略总监殷皓在接受51CTO记者专访时特别谈到了一个很有意思的案例:“某汽车销售机构希望了解历年油价的波动对汽车销售带来的影响,这时他们不需要重新采集关于油价的数据,而是通过Windows Azure上的一个数据集市服务,获得了准确而专业的数据信息,很快的完成了这项分析,充分体现了数据服务带来的价值。”殷皓认为数据不能停留数据存储的阶段,而是要转换成为有价值的信息服务,创造新的商业机会。 大数据将改变谁的命运 DBA是在传统数据库应用领域中极为重要的人群,也许大数据会带给他们理念上的转变。“DBA曾经是IT行业中的金饭碗,因为核心的数据库技术发展相对来说变化的较少,所以有些DBA会慢慢变懒”,殷皓谈到:“但是,变化少不代表不变。如果DBA的工作定位偏向底层运维型的话,那么他们的职能会变得越来越小,甚至会被自动化的服务来取代,未来DBA对基础设施的管理会越来越少,更多的向上层业务扩展。” 我们关注到发展中的DBA分工,其中的一种可能会涉及到企业核心安全保障,成为企业里数据的守门人之一。
另一种角色是研发DBA,它和业务应用结合的非常紧密。包括数据定义、数据建模,从逻辑建模到物理建模,以及后端存储的设计等,未来更多的是成为企业数据模型的管理者。“这实际上也是一个职业发展的过程“,殷皓认为:“运维DBA需要确保7*24的业务连续性,研发DBA更多的负责物理建模,完成开发人员写的存储过程。
而我们看到的数据架构师层面,就是需要从业务需求出发来实现逻辑建模。因为对业务的理解是自动化工具所不能取代的,这也是在大数据的趋势下,DBA所要面临的转变。” SQL Server与大数据的对接 Hadoop是大数据的一个分布式系统架构。5月与微软SQL Server 2012同时发布的还有将Hadoop和SQL Server连在一起的连通器,他们通过标准的ODBC模式,把Hadoop和PDW微软并行数据仓库连在一起,实现多核并发的并行数据仓库。
“用户无需对应用做出很大的改动,只是连接到SQL Server、数据仓库,或者是一个对象。通过这个对象可以把我的连接通过连接键引申出去,然后把所有的数据整合在一起”,殷皓兴奋的分享到:“在这种场景下,我可以把结构化数据和非结构化数据、甚至是数据仓库在模型中的数据整合在一起,做更加深入的数据分析。” SQL Server 2012版本中,微软亚太研发集团服务器与开发工具事业部参与了两个大的功能研发:数据的迁移工具SSIS,数据库升级的服务。
微软针对Hadoop在Windows Server Kernel上做出性能的优化、安全认证的整合,形成企业级的AD整合,并实现了和BI工具的整合。“微软在NoSQL上加一个SQL的索引层,比如eBay的底层用了MangoDB,但所有的交易数据都按照SQL来存储到结点中”,殷浩认为:“NoSQL提供了一个很好的存储机制,但要提高数据利用的效率,最好回到SQL的场景。NoSQL将会是数据库发展过程中的一个中间阶段,会逐渐体现为数据服务中的一部分,而非数据平台的主流。”
关于大数据的话题还将继续争论下去,但可以看到的是,在企业商业智能的发展基础上,数据分析将作为一种服务提供给用户。IT技术提供商们开始实践的大数据,不仅是把数据用于企业内部的业务分析和决策支持,而是以提供数据分析模型的方式优化企业决策。这不仅仅是技术的更新,而是IT消费模式的变革。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15