京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代呼唤公共服务创新_数据分析师考试
最近,上海有个政府网站比较火。这个网站不发布新闻,但这个网站的开通本身就是新闻。这个网站只提供数据信息,它的名字叫“上海政府数据服务网”。
由上海市政府办公厅和上海市经济信息化委牵头,市公安局、市工商局、市交通委等9家试点单位参与,建设了国内首个政府数据服务网,启动了政府数据资源向社会开放试点工作。市民可以通过该网站下载212项数据产品、30项数据应用。在试点的基础上,上海要求当地所有政府部门都要在年内向公众提供数据产品浏览、查询和下载等服务。
上海市把全市政府资源数据集中存储和统一管理,并向社会公开,这种做法看似简单实则复杂,需要莫大的智慧和足够的勇气,无疑是公共服务拥抱大数据时代的有益探索,其经验可复制、可推广。
当我们还在被云计算弄得云里雾里、想象物联网的美好生活时,一个大规模生产、分享和利用大数据的时代已经降临。正如哈佛大学社会学教授加里金所言:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”
大数据不仅是一种海量的数据状态及相应的数据处理技术,更是一种思维方式,一项重要的基础设施,一场由技术变革推动的社会变革,而这种社会变革又伴随并呼唤着公共服务创新。大数据时代给公共服务提出了新挑战,倒逼公共服务的理念和实践创新。
公共服务部门要适应大数据时代,首先就得对大数据的认识、理解和应用要有一个正确的态度。公共服务部门每天都要处理大量数据,或许觉得枯燥无味,但这些数据对于公众或公司而言却是非常有价值的信息。像上海政府数据服务网公布的房地产开发企业信息就有助于公众购房决策,医院床位、候诊人数等信息方便公众就医。比如,某导航公司将上海公开的2万多条地理位置信息用于地图编制与更新,在服务社会之时收获了商业利益。
其次,要有“大数据思维”。“大数据思维”至少有“海量、开放、共享、实时”这么几个重要特征。这就要求公共服务部门改变传统思维模式,激活那些束之高阁的沉睡数据,打破各个部门数据分割状态,打造数据资源聚合平台,尽可能多、尽可能快地通过互联网、手机APP等多种方式向公众公开各类数据资源。
思想的“总闸门”一旦打开,行动的落脚点就得提升。公共服务部门应用“大数据”,说到底是为了方便决策、解决问题,进而更好地服务“大民生”。公共服务部门要善于运用大数据技术从大量个体的行动轨迹之中挖掘共性规律、实时发现问题。如美国西雅图市运用大数据实时监控华盛顿、纽约、芝加哥等多个城市的停车位,有效缓解了上班高峰的停车难题。今年春运期间,百度研发的关于人口迁徙的大数据可视化应用受到广泛关注。该应用为公共服务部门科学决策和合理调配资源提供了可靠依据,为利用大数据进行公共服务和社会管理找到了新的实践方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17