
大数据在公安领域应用前景分析_数据分析师考试
在安防的细分领域中,大数据在公安及智能交通探索应用得比较早,相关的解决方案和技术也比较成熟,在广西等地也已经有相关的项目落地,大数据应用系统已经上线运营,取得了预期的效果。CDA数据分析师考试
项目应用前景看好
以相关的案例来讲,在某省公安厅投入使用的大数据系统中,整个项目是以自治区的总数据为出发点,对每天在所有卡口过道产生的上千万条数据,每年大概三十亿条的数据进行分布式存储和快速检索。在此基础上,后续可以给公安用户提供进一步的解决方案和增值服务,比如已经推出的卡口过车大数据、视频图像大数据和公安情报大数据三方面的解决方案。这些方案提供多种功能的查询,以及基于测控的分析和基站行业的服务,目的就是让公安能快速科学地侦破案件。
在智能交通领域,目前主要应用于车辆的疏导,比如基于不同道路、路口车流量的统计(时、日、月统计等),根据这些统计可以分析不同时段某条道路实时的车流密度、发展方向和趋势等。这些项目的应用已经在很多大城市落地,比如平时大家在公交上看到的移动电视里播放的上下班高峰路段实时画面,就是基于大数据的技术分析所得。从应用上看,用户切实感到便捷好用,所以市场潜力很大,未来的应用会更加广泛。
大数据应用存在的难题
大数据本身是针对数据的存储、检索、关联、推导等有价值的挖掘,这些数据本身来说是通用的。但在安防领域,哪些数据是有用的,哪些是我们需要关心和提取的,这是目前在摸索的问题。也就是说,当前的困难在于如何让技术热点和相关业务进行结合,以提取更有价值的数据。
从技术上分析,有两个技术难点:
第一个难点是如何从非结构化的数据中提取结构化的数据出来。所谓非结构化数据是指在视频里面进行特征的提取,这些可能是人类不能理解和不能处理的;结构化数据则是人可以理解和处理的,比如在视频里有几个活动目标、是人还是车。如果是人,身上穿的是什么样的衣服;如果是车,车牌号是多少、什么样的品牌型号、颜色、行进速度、方向等数据,这些都是可以转化为结构化数据为人所用。目前,安防的数据很多涉及到视频数据,而视频数据本身是不能够被结构化的数据,也就不能被计算机直接所处理。所以未来摆在技术人员面前的课题是如何把视频数据转换成计算机能够处理的结构化或者半结构化数据。
第二个难点是寻找这些数据之间的关联和价值。数据是有关联没关联之分的,我们只能通过工具来找。所有这些存储的特征数据,包括公安行业、平安城市中每天产生的海量视频数据,可以为很多案件的侦查提供有价值的线索。现在技术需要攻克的难题就是能不能把这些数据通过相应的工具模块,通过大数据技术把原来被忽视的数据信息关联起来,找到或提取这些数据之间的相关性,为案件的侦破和方案决策提供科学的数据依据。
公安数据流动的单向性
公安行业每天获取的数据数以千万,如何确保这些数据信息的安全成为行业共同关注的热点。从传统意义上讲,数据产生之后,首先要确保数据本身的安全,目前行业内有非常成熟的技术和解决方案。在海量数据面前,如果你对数据不了解,就算把这些数据摆在面前,你也很难去提取有用的数据,但这并不能作为行业忽视其重要性的借口。因为对安防厂商而言,很多有价值的数据是需要提供保护的,也就是对数据应用模式采取高规格的保护措施,因为这些数据一旦被不法分子挖掘并关联起来,可能整个地区的安全漏洞就会被利用。
现在,公安的数据一般在局域网内运行,并有相关的保护措施来提供安全保障。如会把数据分成不同的网络和不同的层次,让数据在不同的网络安全系统之间,从低安全性网络向高安全性网络实行单向流动,最后在公安的核心网络里汇集所有的数据(这个安全等级是最高的,通过安全边界、物理隔离来保护)。同时在外围的视频网,主要以视频数据为主,辅以视频相关的业务,这些数据只有进入公安网后才与其他的数据发生关联,才能发掘出一些有价值的数据。比如办案民警在视频网络上,可以获取犯罪嫌疑人的照片,但这个人是谁,他的信息是什么,只有进入公安网以后才能获取,才能将相关信息匹配关联起来,然后通过其他数据库的关联,进一步挖掘出他在哪个网吧出现过,在哪个酒店居住过……以上信息都可以挖掘出来,但这种挖掘只能在高安全性网络中进行,这种信息流动都是单向的。
未来的商业模式
从传统的安防业务来讲,还是以公安客户投资建设系统为主,厂商提供产品和集成的解决方案,最终由集成商来做落地实施,最后交付给客户使用并进行相应的维护。同时,未来行业对大数据中数据的获取、存储、分析、处理会变得更加的专业,用户本身在处理和应用时可能会遇到各种困难,那么针对这类问题可能会有一些小型的服务公司出现,给终端用户提供各种各样专业的数据服务。比如专业的视频提取会有专业的公司切入,用专业的算法工具帮助你把视频里面的数据提取出来,或者有那些专业的通讯厂商对数据进行挖掘和处理,包括提供一些工具和服务的模式(未来会更倾向于服务的模式)。但限于公安行业的特点,这些公共服务在公安行业目前还比较难做,不过未来也可以由一些厂家对整个应用系统进行构建,以运营服务收费的方式与公安客户或者政府机构进行合作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29