京公网安备 11010802034615号
经营许可证编号:京B2-20210330
产业互联网的大数据可视化应用_数据分析师考试
提及大数据应用,大众熟悉的更多是与目前的消费互联网相关的领域,通过获得消费者浏览、购物等相关数据,分析其消费习惯、生活方式等,从而进行精准营销。这很大程度上缘于BAT在消费互联网时代一直以来的战略布局。但是,消费互联网的大数据应用有很多局限性:一来数据仅掌握在少数商家手中, 二来数据应用的合法性尚未明确。而企业的数据是真实所属企业所有,并且具有核心经济价值。所以,在大数据领域探索实践多年的数字冰雹公司CEO邓潇一直坚持认为:大数据的应用价值一定更多体现在产业里。如今以价值经济为主要盈利模式的产业互联网概念逐渐浮现和明晰,邓潇的观点有了更坚实的基础,产业互联网的大数据应用这片蓝海也逐渐呈现。
终端、宽带网络、云计算、大数据共同形成了互联网生态链,随着此生态链的商业布局逐渐形成、发展成熟,必然会慢慢渗透到产业内,形成产业互联网。每一个产业都会通过不同形式的采集、传输、存储、计算分析,最终拥有各自的核心数据。数据的有效应用,可以使生产者在生产、交易、融资和流通等各个环节提升资源配置和交易效率,而数据可视化是实现“数据有效应用”的关键环节之一。
数据可视化是利用视觉的方式将巨大的、复杂的、枯燥的、潜逻辑的数据展现出来,使读者发现关联规律,继而进行深度挖掘。所以,数据可视化是大数据领域所有价值的终极呈现,所谓“行百里者半九十”。
产业互联网的大数据可视化,常见的形式可以包括:统计分析数据可视化、宏观态势可视化、工业生产可视化,合理恰当的可视化形式,能够帮助产业生产者更加深刻地透过数据看清本质规律,从而实现提升资源配置和交易效率的目标。
数据统计分析可视化
广泛用于政府、企业经营分析,包括企业的财务分析、供应链分析、销售生产分析、客户关系分析等,将企业经营所产生的所有有价值数据集中在一个系统里集中体现,可用于商业智能、政府决策、公众服务、市场营销等领域。
通过采集相关数据,进行加工并从中提取能够创造商业价值的信息,面向企业、政府战略并服务于管理层、业务层,指导经营决策。数据统计分析可视化负责直接与决策者进行交互,是一个实现了数据的浏览和分析等操作的可视化、交互式的应用。它对于决策人获取决策依据、进行科学的数据分析、辅助决策人员进行科学决策显得十分重要。因此数据统计分析可视化系统对于提升组织决策的判断力、整合优化企业信息资源和服务、提高决策人员的工作效率等具有显著的意义。
宏观态势可视化
态势可视化是在特定环境中对随时间推移而不断动作并变化的目标实体进行觉察、认知、理解,最终展示整体态势。此类大数据可视化应用通过建立复杂的仿真环境,通过大量数据多维度的积累,可以直观、灵活、逼真地展示宏观态势,从而让决策者很快掌握某一领域的整体态势、特征,从而做出科学判断和决策。
宏观态势可视化可应用于航天的卫星运行监测、航空的航班运行情况,气候天气态势特征等。例如卫星可视化可以通过将宇宙空间内所有卫星的运行数据进行可视化展示,大众可以一目了然宇宙空间的卫星态势。了解大范围卫星态势,并对卫星的轨道、在轨姿态、卫星所执行的任务可视化呈现,可以包括卫星飞行、变轨、侦查,扫描,数据传输等等。除此之外,对卫星回传的数据,卫星自身的状态,也有针对性的可视化分析和监测。
工业生产可视化
工业企业中生产线处于高速运转,由工业设备所产生、采集和处理的数据量远大于企业中计算机和人工产生的数据,生产线的高速运转则对数据的实时性要求也更高。破解这些大数据就是企业在新一轮制造革命中赢得竞争力的钥匙。因此,工业生产可视化系统是工业制造业的最佳选择。
工业生产可视化是将虚拟现实技术有机融入了工业监控系统,系统展现界面以生产厂房的仿真场景为基础,对各个工段、重要设备的形态都进行复原,作业流转状态可以在厂房视图当中直接显示。在单体设备视图中,机械设备的运行模式直接以仿真动画的形式展现,通过图像、三维动画以及计算机程控技术与实体模型相融合,实现对设备的可视化表达,使管理者对其所管理的设备有形象具体的概念。同时,对设备运行中产生的所有参数一目了然,从而大大减少管理者的劳动强度,提高管理效率和管理水平。
当前,发达国家一些大牌IT企业已提前发力,通过加大开发力度和兼并等多种手段,努力向大数据解决方案提供商转型。国外一些企业打出免费承接大数据分析的招牌,既是为了练兵,也是为了获取情报。过分依赖国外的大数据分析技术与平台,难以回避信息泄密风险。因此,从产业信息安全角度考虑,中国还必须拥有自主研发的产业互联网大数据可视化产品,以保证中国企业在产业互联网浪潮前进的路上没有后顾之忧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20