京公网安备 11010802034615号
经营许可证编号:京B2-20210330
产业互联网的大数据可视化应用_数据分析师考试
提及大数据应用,大众熟悉的更多是与目前的消费互联网相关的领域,通过获得消费者浏览、购物等相关数据,分析其消费习惯、生活方式等,从而进行精准营销。这很大程度上缘于BAT在消费互联网时代一直以来的战略布局。但是,消费互联网的大数据应用有很多局限性:一来数据仅掌握在少数商家手中, 二来数据应用的合法性尚未明确。而企业的数据是真实所属企业所有,并且具有核心经济价值。所以,在大数据领域探索实践多年的数字冰雹公司CEO邓潇一直坚持认为:大数据的应用价值一定更多体现在产业里。如今以价值经济为主要盈利模式的产业互联网概念逐渐浮现和明晰,邓潇的观点有了更坚实的基础,产业互联网的大数据应用这片蓝海也逐渐呈现。
终端、宽带网络、云计算、大数据共同形成了互联网生态链,随着此生态链的商业布局逐渐形成、发展成熟,必然会慢慢渗透到产业内,形成产业互联网。每一个产业都会通过不同形式的采集、传输、存储、计算分析,最终拥有各自的核心数据。数据的有效应用,可以使生产者在生产、交易、融资和流通等各个环节提升资源配置和交易效率,而数据可视化是实现“数据有效应用”的关键环节之一。
数据可视化是利用视觉的方式将巨大的、复杂的、枯燥的、潜逻辑的数据展现出来,使读者发现关联规律,继而进行深度挖掘。所以,数据可视化是大数据领域所有价值的终极呈现,所谓“行百里者半九十”。
产业互联网的大数据可视化,常见的形式可以包括:统计分析数据可视化、宏观态势可视化、工业生产可视化,合理恰当的可视化形式,能够帮助产业生产者更加深刻地透过数据看清本质规律,从而实现提升资源配置和交易效率的目标。
数据统计分析可视化
广泛用于政府、企业经营分析,包括企业的财务分析、供应链分析、销售生产分析、客户关系分析等,将企业经营所产生的所有有价值数据集中在一个系统里集中体现,可用于商业智能、政府决策、公众服务、市场营销等领域。
通过采集相关数据,进行加工并从中提取能够创造商业价值的信息,面向企业、政府战略并服务于管理层、业务层,指导经营决策。数据统计分析可视化负责直接与决策者进行交互,是一个实现了数据的浏览和分析等操作的可视化、交互式的应用。它对于决策人获取决策依据、进行科学的数据分析、辅助决策人员进行科学决策显得十分重要。因此数据统计分析可视化系统对于提升组织决策的判断力、整合优化企业信息资源和服务、提高决策人员的工作效率等具有显著的意义。
宏观态势可视化
态势可视化是在特定环境中对随时间推移而不断动作并变化的目标实体进行觉察、认知、理解,最终展示整体态势。此类大数据可视化应用通过建立复杂的仿真环境,通过大量数据多维度的积累,可以直观、灵活、逼真地展示宏观态势,从而让决策者很快掌握某一领域的整体态势、特征,从而做出科学判断和决策。
宏观态势可视化可应用于航天的卫星运行监测、航空的航班运行情况,气候天气态势特征等。例如卫星可视化可以通过将宇宙空间内所有卫星的运行数据进行可视化展示,大众可以一目了然宇宙空间的卫星态势。了解大范围卫星态势,并对卫星的轨道、在轨姿态、卫星所执行的任务可视化呈现,可以包括卫星飞行、变轨、侦查,扫描,数据传输等等。除此之外,对卫星回传的数据,卫星自身的状态,也有针对性的可视化分析和监测。
工业生产可视化
工业企业中生产线处于高速运转,由工业设备所产生、采集和处理的数据量远大于企业中计算机和人工产生的数据,生产线的高速运转则对数据的实时性要求也更高。破解这些大数据就是企业在新一轮制造革命中赢得竞争力的钥匙。因此,工业生产可视化系统是工业制造业的最佳选择。
工业生产可视化是将虚拟现实技术有机融入了工业监控系统,系统展现界面以生产厂房的仿真场景为基础,对各个工段、重要设备的形态都进行复原,作业流转状态可以在厂房视图当中直接显示。在单体设备视图中,机械设备的运行模式直接以仿真动画的形式展现,通过图像、三维动画以及计算机程控技术与实体模型相融合,实现对设备的可视化表达,使管理者对其所管理的设备有形象具体的概念。同时,对设备运行中产生的所有参数一目了然,从而大大减少管理者的劳动强度,提高管理效率和管理水平。
当前,发达国家一些大牌IT企业已提前发力,通过加大开发力度和兼并等多种手段,努力向大数据解决方案提供商转型。国外一些企业打出免费承接大数据分析的招牌,既是为了练兵,也是为了获取情报。过分依赖国外的大数据分析技术与平台,难以回避信息泄密风险。因此,从产业信息安全角度考虑,中国还必须拥有自主研发的产业互联网大数据可视化产品,以保证中国企业在产业互联网浪潮前进的路上没有后顾之忧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01