
【PPT】大数据时代如何做商业分析_数据分析师考试
大数据实时、海量而全面,可以提供业务的全部细节,这是结构化的市场调研小数据非常欠缺的特质,正因为这一点,很多人都说大数据时代,市场调研即将走向末世。而如果需要了解消费者的态度或行为与态度之间的因果关系,通过大数据目前为止确实是不行的,而这些反而是厂商、品牌最关注的问题。在这一方面,市场研究以小样本数据可以给予补充。
百分点在探索数据决策化的商业分析道路上,以洞察消费者为目的,带着小数据的思维用大数据构建解决方案,实现大小数据的融合。
首先将企业web站的第一方数据、微信、邮件和APP等数据和百分点全网数据进行打通,然后搭建个性化的用户标签体系,打造360度全景画像。基于这样的数据,我们从用户被获取、成熟到衰退,这样一个完整的用户生命周期去做模型平台的建模分析,帮助企业实现客户价值潜能的最大化。
通过归因模型和聚类分析模型,分别去分析获取新增用户时哪些渠道比较好,以及把客户进行细分,精准识别人群特征。RFM模型可以去做用户价值群体的运营,通过用户忠诚度和活跃度模型进一步识别价值群体,还有识别意见领袖的社会网络分析模型,寻找传播节点等。最后,当用户走向衰退期,通过流失预警模型去分析哪些因素导致用户流失,哪些用户是容易流失的用户群体。
百分点为客户的网站提出的运营分析,主要通过营收成本指标、访客行为度量和商业内容兴趣指标衡量客户的网站。用户分析主要围绕人口统计学特征、日常媒体接触习惯和网购行为加以分析。
产品上市之后实时追踪多渠道销量,并且和同类产品的基准值进行比较,判断问题所在,调整营销战略。
根据客户需求,运用RFM模型将人群细分为不同价值群体,分别看他们的搜索、浏览和购买情况,发现问题,通过市场调研深度挖掘问题产生的原因。
关联规则模型可以找到品类或具体商品之间共同购买的可能性,为品牌拓展产品线提供建议,也可以为渠道、品牌的促销活动中的打包销售提供建议。
对于营销的其他几个要素:价格、渠道、促销,我们也可以通过大数据提供解决方案。Gabor Granger是市场调研中比较基础的定价研究方案。在大数据环境下,可以用商品最初上市时的数据为参考,对价格进行再次调整。
对于更多广告主来说,合理规划渠道营销预算,实现ROI(投资回报率)最大化是每个人的最大目标。然而面对复杂媒介类型,更多的广告主都无从下手。如何优化渠道以提高ROI、哪个媒介投放效果是合适我的营销产品/活动?
随着全路径效果追踪的出现,广告主可以更清楚了解每一转化背后的过程是如何发生的。归因模型的优势在于:能以数字化的方式将每一渠道的价值具体反映出来。它不仅可以帮助广告主有效调控媒介渠道,并且在分配营销预算、优化渠道从而提高ROI方面也有显著作用。要将归因模型的价值最大化, 广告主应首先清楚了解及定立明确的市场推广目的,不论是提升转化量、增加用户注册或下载购物折扣券等。接着, 广告主应了解应如何将分数给予每一对转化有贡献的渠道, 根据不同的应用场景选择不同的归因模型。
对于销售渠道,可以把每个渠道针对某一产品/某类产品的销售数据与行业平均值进行比较。更简单的例子是,可以通过SWOT模型分析优劣势为渠道商找到差异化经营思路,或者为厂商提供每种商品在何种渠道销售的建议。
很多客户都希望了解消费者全网媒体浏览行为,根据浏览时段、不同设备研究,做活动。可以根据浏览时段、使用设备的趋势以及日常接触媒体类型做出相应的营销活动渠道、方式、内容的调整。
此外,大数据还可以向品牌提供服务。除了最基本的统计描述分析和对比外,也可以通过分布聚类模型考察搜索行为,了解品牌竞争情况,以及消费者的最需要的信息。同时,借用市场研究的品牌研究中经常使用的方法进行分析,比如品牌位置、品牌优势点的分析。
大数据商务分析偏重对数据本身的分析,属于数据驱动型的分析方法,而市场调研是以解决每一个具体问题为出发点,创造针对营销问题的解决模型。在市场调研中,定性研究以心理学为基础,虽然脱离狭义的“数据”这一概念,但是更适合探究消费者深层的心理原因与偏好,获取这方面的广义“数据”。而大数据商务分析则一切以数据出发,相对来说,缺少对“原因”的研究,大小数据融合是大数据时代商业分析的必经之路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18