京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【PPT】大数据时代如何做商业分析_数据分析师考试
大数据实时、海量而全面,可以提供业务的全部细节,这是结构化的市场调研小数据非常欠缺的特质,正因为这一点,很多人都说大数据时代,市场调研即将走向末世。而如果需要了解消费者的态度或行为与态度之间的因果关系,通过大数据目前为止确实是不行的,而这些反而是厂商、品牌最关注的问题。在这一方面,市场研究以小样本数据可以给予补充。
百分点在探索数据决策化的商业分析道路上,以洞察消费者为目的,带着小数据的思维用大数据构建解决方案,实现大小数据的融合。
首先将企业web站的第一方数据、微信、邮件和APP等数据和百分点全网数据进行打通,然后搭建个性化的用户标签体系,打造360度全景画像。基于这样的数据,我们从用户被获取、成熟到衰退,这样一个完整的用户生命周期去做模型平台的建模分析,帮助企业实现客户价值潜能的最大化。
通过归因模型和聚类分析模型,分别去分析获取新增用户时哪些渠道比较好,以及把客户进行细分,精准识别人群特征。RFM模型可以去做用户价值群体的运营,通过用户忠诚度和活跃度模型进一步识别价值群体,还有识别意见领袖的社会网络分析模型,寻找传播节点等。最后,当用户走向衰退期,通过流失预警模型去分析哪些因素导致用户流失,哪些用户是容易流失的用户群体。
百分点为客户的网站提出的运营分析,主要通过营收成本指标、访客行为度量和商业内容兴趣指标衡量客户的网站。用户分析主要围绕人口统计学特征、日常媒体接触习惯和网购行为加以分析。

产品上市之后实时追踪多渠道销量,并且和同类产品的基准值进行比较,判断问题所在,调整营销战略。

根据客户需求,运用RFM模型将人群细分为不同价值群体,分别看他们的搜索、浏览和购买情况,发现问题,通过市场调研深度挖掘问题产生的原因。

关联规则模型可以找到品类或具体商品之间共同购买的可能性,为品牌拓展产品线提供建议,也可以为渠道、品牌的促销活动中的打包销售提供建议。

对于营销的其他几个要素:价格、渠道、促销,我们也可以通过大数据提供解决方案。Gabor Granger是市场调研中比较基础的定价研究方案。在大数据环境下,可以用商品最初上市时的数据为参考,对价格进行再次调整。
对于更多广告主来说,合理规划渠道营销预算,实现ROI(投资回报率)最大化是每个人的最大目标。然而面对复杂媒介类型,更多的广告主都无从下手。如何优化渠道以提高ROI、哪个媒介投放效果是合适我的营销产品/活动?

随着全路径效果追踪的出现,广告主可以更清楚了解每一转化背后的过程是如何发生的。归因模型的优势在于:能以数字化的方式将每一渠道的价值具体反映出来。它不仅可以帮助广告主有效调控媒介渠道,并且在分配营销预算、优化渠道从而提高ROI方面也有显著作用。要将归因模型的价值最大化, 广告主应首先清楚了解及定立明确的市场推广目的,不论是提升转化量、增加用户注册或下载购物折扣券等。接着, 广告主应了解应如何将分数给予每一对转化有贡献的渠道, 根据不同的应用场景选择不同的归因模型。

对于销售渠道,可以把每个渠道针对某一产品/某类产品的销售数据与行业平均值进行比较。更简单的例子是,可以通过SWOT模型分析优劣势为渠道商找到差异化经营思路,或者为厂商提供每种商品在何种渠道销售的建议。
很多客户都希望了解消费者全网媒体浏览行为,根据浏览时段、不同设备研究,做活动。可以根据浏览时段、使用设备的趋势以及日常接触媒体类型做出相应的营销活动渠道、方式、内容的调整。
此外,大数据还可以向品牌提供服务。除了最基本的统计描述分析和对比外,也可以通过分布聚类模型考察搜索行为,了解品牌竞争情况,以及消费者的最需要的信息。同时,借用市场研究的品牌研究中经常使用的方法进行分析,比如品牌位置、品牌优势点的分析。
大数据商务分析偏重对数据本身的分析,属于数据驱动型的分析方法,而市场调研是以解决每一个具体问题为出发点,创造针对营销问题的解决模型。在市场调研中,定性研究以心理学为基础,虽然脱离狭义的“数据”这一概念,但是更适合探究消费者深层的心理原因与偏好,获取这方面的广义“数据”。而大数据商务分析则一切以数据出发,相对来说,缺少对“原因”的研究,大小数据融合是大数据时代商业分析的必经之路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14