京公网安备 11010802034615号
经营许可证编号:京B2-20210330
本文从个人的角度去谈一下如何使用数据挖掘帮助零售商提升生意,让数据真正地去指导企业经营,最大限度地发挥数据提供商业决策的作用。
第一、开展会员制能够帮助企业采集更多会员数据,更有利于开展数据挖掘的工作,同时也有利于培养客户忠诚度。
在实施会员制的时候,必须要特别注意两个关键信息的采集:会员卡ID、客户联系号码或者邮箱,因为这两个关键信息对信息采集及后期的精准营销有很大 的帮助作用。而微信、微博等社交媒体的横行,若零售商能够通过相关活动让客户关注企业的微信、微博,对培养客户忠诚度也是有很大的帮助。
会员制有助于为企业培养众多忠实的顾客,建立起一个长期稳定的市场,提高企业的竞争力。通过会员制,可以有效稳定老客户,同时开发新顾客。因为零售 商给会员提供的是优惠的价格,对新顾客吸引力很大,同时大部分会员卡是可以外借的,也给新客户提供了机会,大大增加其成为会员的可能性。
会员制营销能够促进企业与顾客双向交流。顾客成为会员后,通常能定期收到商家有关新商品的信息并了解商品信息和商家动态,有针对性地选购商品。除此之外,企业能够及时了解消费者需求的变化,以及他们对产品、服务等方面的意见,为改进企业的营销模式提供了依据。
第二、开展零售商的数据挖掘项目,必须要重点提供以下几个表的关键信息:
销售表:卡号、销售店ID、销售日期、产品名称、产品价格、销售数量、销售金额、折扣等信息。
产品表:产品ID、产品名称、建议零售价、实际销售价、一级类别、二级类别、三级类别、四级类别、品牌等信息。
客户表:卡号、发卡店ID、城市、号码、邮箱、企业或个人标识、企业名称、所在行业、地址等。
零售店表:店ID、店名、所属城市、店等级等。
其中销售表、产品表、客户表比较重要,而产品表梳理对数据分析及数据挖掘团队而言,是做好项目的关键,必须要耗费大量的时间。
第三、与零售商明确数据挖掘目的,能够让分析团队与零售商之间获得更大的信任,同时有利于项目的顺利开展。
成熟的分析团队,比较关注零售商的商业出发点,从客户商业价值出发,抓住客户关注点,一点一点地做好相应的落地分析工作。
客户最常见想让数据帮助其解答的几大问题:
如何让活跃的客户购买更多的产品,最大程度地释放其价值?
如何唤醒沉默客户,让其转化为活跃客户?
哪些客户是我的重点客户群?其有什么样的特征?
哪些重点客户流失了?为什么流失?后期怎样开展挽留手段?
……
第四、通过数据开展客户细分,明确各个群体的特征。
对于零售数据而言,必须要深入零售行业两大客户群:企业及个人。企业客户的特征和个人客户的特征有很大的区别。
企业特征主要表现:采购量比较大,经常进行团购或批发,销售量和销售额都比较大,为零售商的重点客户群。尽管数量不多,但是却贡献了零售商的60% 以上的销售额。而企业的行为经常有:超大型采购、中型采购、一般采购。对企业数据挖掘,需要深入了解企业的所属行业、采购额度、采购规律、采购产品偏好、 是否流失、流失的原因调查等信息,有助于帮助零售商开展相应的营销策略。
对于个人,则需要关注哪些是活跃客户、哪些是新增客户、哪些是沉默客户、客户价值是怎样的、哪些节日是重点高峰期、偏好的产品是哪些等等,这些有助于零售商开展销售、备货等工作。
第五、结合5W1H分析法开展零售分析与挖掘。
What:销售情况怎么样?有多少用户?来了多少次?每次消费多少钱?买了什么东西…….
Where:哪些门店销售最好?为什么呢?(交通、地区等) …….
When:哪个月份销售得最好?哪个节日是销售高峰期…….
Who:是哪些客户?有什么样的特征?偏好买哪些产品?产品规格是怎么样的…….
Why:为什么买哪些产品?为什么买那么多?会不会继续购买…….
How:怎样提高客户重购?怎样唤醒客户?怎么进行交叉销售?怎样帮助铺货……
第六、协助零售商开展营销活动设计、营销活动执行、营销评估与优化。
因为数据挖掘是一个闭环的流程,不是撰写挖掘报告、输出营销客户名单就是项目成功的,必须协助零售商开展相应的营销设计、营销活动执行、营销评估及优化工作。从而确保数据挖掘有效落地,为客户真实产生商业价值,扩大生意规模。
营销活动设计常有:优惠打折、派发试用装、赠送礼品、多倍积分等,可以通过不同的细分客户群有针对性地开展不同的营销活动,并计算不同群体及不同活动的投入产出比,便于后期不断优化数据挖掘规则。
第七、关键成果固化IT系统,实现数据挖掘成果固化落地。
对于零售商而言,数据挖掘是个不大不小的投入,对于关键的成果输出,总希望能够把成果规则进行IT固化,实现自动代替手工操作,这个时候经常需要搭建一个成果固化模块或系统,让数据挖掘能够最大限度帮助企业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17