
大数据可解险企展业之困_数据分析师考试
大数据的日益崛起不仅从根本上改变了数据技术,而且在一定程度上影响了各行各业发展,作用于民众日常生活的方方面面。以数据为本的保险业也无一例外受到了大数据的“熏陶”,大数据将有助于保险公司准确收集、分析处理投保人个性化的风险信息,创新保险产品和服务,降低信息不对称风险,同时延长产业链和升级商业模式。
保险业大数据进程正在加速中。继中国保险信息技术管理有限公司接管各地车险信息平台,着力于搭建全国车险信息平台后,日前中国保险行业协会宣布,为了集中与共享行业产品信息,“中国人身保险产品信息库”于10月正式上线运行。
随着大数据时代的到来,如何顺应行业发展变更、把握机遇升级迭代,已经成为保险公司不得不正视的问题。
人身险信息库首建成
记者在采访中了解到,该人身险产品库实现了将2009年新《保险法》实施以来,所有人身保险公司在我国境内销售和已停售的人寿保险、意外伤害保险、健康保险、养老保险等全部人身险产品的信息入库工作。今后,消费者可上网扫描所持有的条款二维码,即时查看产品信息和条款文本,验证条款内容的真实性,并可登陆中保协网站,通过10个维度23个查询条件进行查询和比较。
“这是保险业复业36年来,首次在人身险领域尝试并成功建成的行业产品信息总库。”中保协相关负责人透露。
尤其值得注意的是,中保协相关负责人指出,通过对人身险产品库相关信息的综合研究与多角度分析,将有助于行业全面了解产品发展现状及存在的问题。并且,产品库首次实现了行业产品全险种覆盖,并将不断更新,从真正意义上实现了行业产品及条款数据的归集,有利于我国人身险产品的公开化和透明化,对进一步深化行业产品改革,鼓励公司加强产品创新、推进行业产品条款的通俗化、标准化、简单化以及防范销售误导等方面都具有深远影响。
事实正是如此,该人身险产品库的建成是加快保险业大数据进程的重要举措,有助于夯实行业基础设施建设、促进行业产品信息集中与共享、提高行业综合经营管理水平以及为广大保险消费者提供有效服务。
产品服务创新迎机遇
正如中国人保财险股份有限公司执行副总裁王和所言,大数据时代的到来使得对保险全量、大规模、多样性、实时、潜在数据的获得及快速分析成为可能,为保险产品和服务创新带来了全新的机会与广阔的空间。
众所周知,寿险产品是基于样本生命表数据,结合利率、费率等信息,运用精算模型来确定实际保费。虽然随着时间的推移和社会的发展,保险标的的风险状况会不断变化,但是保险费率一经确定,在保险期限内一般都是固定的。这无疑在一定程度上为保险公司带来了承保风险,而大数据正好可以解决这个难题。通过大数据,保险公司可以根据保险对象实时的风险信息变化及时调整保险费率,使得保险产品更具有个性化,同时有效控制风险。
那么,这些数据信息要从哪里找?事实上,保险公司在长期经营过程中已经积累了大量的历史数据和信息,而且每个人的工作、消费、休闲也会时刻产生海量数据。在不侵犯个人隐私的前提下,保险公司可以收集个人生活信息数据,并以此为基础进行分析处理,实现每个不同个体的“个性精算”,从而创新寿险产品。
在日前召开的第15届中国精算年会上,保监会副主席陈文辉也提出,近一年来兴起的智能手环、智能手表等可穿戴设备可以收集脉搏、睡眠、运动量等与个人身体状况相关的大量数据,精算师完全可以考虑合理利用这些数据,形成科学的精算模型,按照个体特征开发定制产品,为精准定价提供重要基础。
值得一提的是,目前我国人身险领域已经出现大数据时代的新型保险——基于使用的保险(UBI),通过培养用户习惯来减免保费。“阳光星运动健康管理计划”规定,如果用户运动年累计达标在200天以上,将能获得保费全额返还,相当于用户零费用享有了重大疾病保险,自7月15日在淘宝上线以来累积售出59件。
商业模式升级或实现
“就保险业而言,大数据不仅改变了数据的数量、质量和维度等技术指标,更重要的是改变了保险精算的理论基础,继而改变了保险经营的基础环境,给保险行业带来根本性,甚至是颠覆性的变革。”王和直言,保险业需要审时度势,与时俱进,用大数据时代的眼光和思维,重新考察保险的经营逻辑,实现一种基于新技术创新应用的商业模式创新。
王和认为,大数据使得保险企业能够聚合上下游的资源,再造保险价值链。由于车险部门积累了大量车辆损失数据、修理费用数据、零件损失及更换数据,健康险部门积累了大量健康数据、疾病治疗数据、医疗费用数据,因此借助于大数据的积累、整合与分析,保险公司可以与汽车维修、零配件供应、医院、药品生产企业等机构建立更加紧密的合作,延伸保险的服务边界,一方面降低保险经营成本,提高利润,另一方面也为客户提供更加便捷的“一站式”服务,提升客户体验。
与此同时,数据也将成为企业非常重要的一项资产。保险公司掌握的大量承保、理赔等业务数据,经过分析、挖掘及应用,将衍生出众多的商业机会,例如建立二手车交易中介市场,为被保险的机动车辆进行担保;建立资源与服务的团购平台,出售医疗健康服务、防灾防损服务、车辆维修保养服务等。
此外,由于具备与客户频繁交流的优势,基于使用的保险(UBI)或将有机会大大改善保险公司与客户的日常关系,全面渗透到客户日常风险管理。通过坚持良好的生活习惯并记录反馈给保险公司,客户每年将有可能主动与保险公司接触很多次,使得保险日渐融入消费者日常生活,有助于解决保险公司“信息少”、“获客难”、“展业困”等问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08