
用R语言进行简单线性回归分析,数据出自何晓群--应用回归分析,语言如下所示:
x y
3.4 26.2
1.8 17.8
4.6 31.3
2.3 23.1
3.1 27.5
5.5 36
0.7 14.1
3 22.3
2.6 19.6
4.3 31.3
2.1 24
1.1 17.3
6.1 43.2
4.8 36.4
3.8 26.1
#-------------------------------------------------------------#数据准备
fire <- read.table('D:/fire.txt', head = T)
#-------------------------------------------------------------#回归分析
plot(fire$y ~ fire$x)
fire.reg <- lm(fire$y ~ fire$x, data = fire) #回归拟合
summary(fire.reg) #回归分析表
anova(fire.reg) #方差分析表
abline(fire.reg, col = 2, lty = 2) #拟合直线
#-------------------------------------------------------------#残差分析
fire.res <- residuals(fire.reg) #残差
fire.sre <- rstandard(fire.reg) #学生化残差
plot(fire.sre)
abline(h = 0)
text(11, fire.sre[11], label = 11, adj = (-0.3), col = 2) #标注点
#-------------------------------------------------------------#预测与控制
attach(fire) #连接
fire.reg <- lm(y ~ x) #这种回归拟合简单
fire.points <- data.frame(x = c(3.5, 4))
fire.pred <- predict(fire.reg, fire.points, interval = 'prediction', level = 0.95) #预测:置信区间
fire.pred
detach(fire) #取消连接
--------------------------------------------------------------------------------------------------
#附自编的过程程序:(R最大的好处是可以自己编想要的程序和函数,尤其没有内置函数的时候)
fire <- read.table('D:/fire.txt', head = T)
attach(fire)
--------------------------------------------
lxy <- function(x){
sum <- 0
sum0 <- 0
for(i in 1:length(x)){
sum0 <- (x[i] - mean(x)) * (y[i]-mean(y))
sum <- sum + sum0}
sum}
---------------------------------------------------------------------------------
#用这个就不需要循环了
lxy <- function(x){
mid <- (x - mean(x)) * (y-mean(y))
sum <- sum(mid)
sum}
#对于数据框、列表等数据对象要善用apply()函数。
---------------------------------------------------------------------------------
lxx <- function(x){
sum <- 0
sum0 <- 0
for(i in 1:length(x)){
sum0 <- (x[i] - mean(x))^2
sum <- sum + sum0}
sum}
Lxx <- lxx(x)
Lyy <- lxx(y)
Lxy <- lxy(x)
b1 <- Lxy / Lxx; b1 #回归系数斜率
b0 <- mean(y) - b1 * mean(x); b0 #回归系数截距
residu <- y - (b0 + b1*x); residu #残差
r <- Lxy / sqrt(Lxx * Lyy); r #相关系数
rsqure <- r^2; rsqure #决定系数
adrsqure <- 1 - ((length(x)-1)/(length(x)-2))*(1-r^2) #调整后的决定系数
----------------------------------------------------------------------------------
esrequre <- function(x){ #求标准差平方估计值
sum <- 0
sum0 <- 0
for(i in 1:length(x)){
sum0 <- residu[i]^2
sum <- sum + sum0}
residusqure <- sum/(length(x)-2)
residusqure}
esterreq <- esrequre(x); esterreq #标准差平方估计值(MSE)
ester <- sqrt(esrequre(x)); ester #标准差估计值(回归分析表给出的标准误差)
val_t <- b1*sqrt(Lxx) / ester; val_t #检验回归系数斜率b1的t值
SSe <- function(x){ #求残差平方和
sum <- 0
sum0 <- 0
for(i in 1:length(x)){
sum0 <- residu[i]^2
sum <- sum + sum0}
sum}
SSE <- SSe(x); SSE #残差平方和
MSE <- SSE/(length(x)-2); MSE #残差均方和
SSr <- function(x){
sum <- 0
sum0 <- 0
for(i in 1:length(x)){
sum0 <- ((b0 + b1*x[i]) - mean(y))^2
sum <- sum + sum0}
sum}
SSR <- SSr(x); SSR #回归平方和
MSR <- SSR/1; MSR #回归均方和
val_F <- SSR / MSE; val_F #检验回归方程F值
hi <- 1/length(x) + (x-mean(x))^2/Lxx #杠杆值
ZRE <- residu / ester; ZRE #标准化残差
SRE <- residu/(ester*sqrt(1-hi)); SRE #学生化残差
Y <- function(x){b0 + b1 * x} #点估计
Y(3.5)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29