cda

数字化人才认证

首页 > 行业图谱 >

year_month 数据类型 :时间维度的精准切片

year_month数据类型:时间维度的精准切片
2025-07-09
year_month数据类型:时间维度的精准切片​ ​ 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准的手术刀,将时间轴切割成以年月为单位的整齐片段。这种数据类型看似简单,却在金融报 ...
维度表和事实表的数据类型分析
2024-12-06
在数据仓库设计中,维度表和事实表是至关重要的数据结构。它们各自承载不同的角色和数据类型,为我们提供了丰富的信息内容。让我们深入探讨这些表的特点以及它们在数据分析中的应用。 维度表的数据类型分析 维度表在 ...

数据分析师教程《Python数据分析极简入门》第2节 2 Pandas 数据类型

数据分析师教程《Python数据分析极简入门》第2节 2 Pandas数据类型
2024-11-20
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据结构,因为它依然是 Python 的一个库,所以 Python 中有的数据类型在这里依然适用。我 ...
如何应对多样化的数据类型和数据来源?
2024-04-15
随着科技的不断进步,数据的多样性和来源的多样性已经成为当代社会面临的一个重要挑战。从传统的结构化数据到半结构化和非结构化数据,从内部产生的数据到外部采集的数据,我们需要有效地应对这些多样化的数据类型和 ...

如何利用 pandas 根据 数据类型 进行筛选?

如何利用 pandas 根据数据类型进行筛选?
2021-09-24
来源:早起Python 作者:刘早起 前两天,有一位读者在知识星球提出了一个关于 pandas 数据清洗的问题。 他的数据大致如下 现在希望分别做如下清洗 “A列中非字符行B列中非日 ...

只需七步!零基础入门Python变量与 数据类型

只需七步!零基础入门Python变量与数据类型
2021-07-15
来源:数据STUDIO 作者:云朵君 Python(英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/)是一种广泛使用的解释型、高级和通用的编程语言。Python支持多种编程范型,包括函数式、指令式、结构 ...

R语言中的 数据类型 和数据结构简单介绍!

R语言中的数据类型和数据结构简单介绍!
2020-09-01
作者:丁点helper  来源:丁点帮你 前面的文章提到,R语言是一门针对『对象』的语言,这里说的对象,最主要的就是数据。R可以创建、读取、处理多种类型的数据。今天先讲一些基本概念。 R语言中 ...

大数据主要分析的 数据类型

大数据主要分析的数据类型
2018-05-11
大数据主要分析的数据类型 对于大数据的学习,如果想要清晰了解其技能,那么我们需要明白分析什么数据,也就是说我们需要了解大数据要分析的数据类型,宗其来讲主要有四大类: 交易数据(TRANSACTION DATA) ...

R语言 数据类型

R语言数据类型
2017-06-14
R语言数据类型 当编写任何编程语言程序,需要使用不同的变量来存储各种信息。变量不过是用于保留存储器位置的存储值。这意味着,当创建一个变量,它会保留在内存中的一些空间。 你可能喜欢存储诸如字符 ...

【CDA干货】从杂乱到清晰:无序数据点的系统分析方法论

【CDA干货】从杂乱到清晰:无序数据点的系统分析方法论
2025-11-28
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时上传的杂乱监测数据……这些数据看似混乱,实则隐藏着业务增长的密码、用户需求的线索 ...

CDA数据分析师:玩转表格结构数据,从全生命周期挖掘价值

CDA数据分析师:玩转表格结构数据,从全生命周期挖掘价值
2025-11-26
表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用户行为表,表格数据贯穿业务全流程。CDA分析师的核心能力,正是在表格数据“类型识别— ...

【CDA干货】pandas列标签获取全攻略:数据处理的“入门钥匙”

【CDA干货】pandas列标签获取全攻略:数据处理的“入门钥匙”
2025-11-25
在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识”,更是数据筛选、清洗、聚合等操作的基础依据。无论是初学者面对陌生数据集时的“数 ...

CDA数据分析师:驾驭表格结构数据——从特征洞察到业务价值

CDA数据分析师:驾驭表格结构数据——从特征洞察到业务价值
2025-11-25
在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表,到POS机记录的销售明细表,再到财务系统生成的成本核算表,表格以“行-列”的清晰结 ...

【CDA干货】大数据营销的“精准导航”:特征重要性分析的实战价值

【CDA干货】大数据营销的“精准导航”:特征重要性分析的实战价值
2025-11-24
在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用户特征数据(如浏览行为、消费记录、社交互动等),究竟哪些才是驱动转化、留存的关键 ...

【CDA干货】Tableau滑动条:让数据动态叙事的交互核心

【CDA干货】Tableau滑动条:让数据动态叙事的交互核心
2025-11-21
在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势”“不同客单价区间的用户转化”时,传统固定筛选的图表往往需要反复调整参数,效率低下 ...

CDA数据分析师:用数据激活战略分析方法,赋能企业决策

CDA数据分析师:用数据激活战略分析方法,赋能企业决策
2025-11-21
在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困境——战略报告满是“行业前景良好”“竞争压力较大”的模糊结论,无法为决策提供精准 ...

【CDA干货】Excel透视表进阶:两个字段相乘的完整实现指南

【CDA干货】Excel透视表进阶:两个字段相乘的完整实现指南
2025-11-14
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量×毛利率=毛利额”“人数×人均产值=总产 值”。透视表默认的“求和、计数、平均值” ...

【CDA干货】DBeaver实现UAT到SIT表数据同步(同表结构):实操指南

【CDA干货】DBeaver实现UAT到SIT表数据同步(同表结构):实操指南
2025-11-14
在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完全一致。DBeaver作为通用数据库管理工具,无需依赖第三方同步工具,通过其内置功能即 ...

【CDA干货】大数据应用的行业密码:不同企业的实践异同与特性适配

【CDA干货】大数据应用的行业密码:不同企业的实践异同与特性适配
2025-11-12
大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金融企业的风险控制却呈现出截然不同的形态。其本质在于:大数据的价值落地,始终围绕行 ...

【CDA干货】用模型挖掘数据中的隐性特征:方法、案例与落地指南

【CDA干货】用模型挖掘数据中的隐性特征:方法、案例与落地指南
2025-11-07
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “隐性特征”—— 它们隐藏在数据关联、行为模式或语义背后,比如 “用户潜在消费偏好” ...

OK
客服在线
立即咨询