cda

数字化人才认证

首页 > 行业图谱 >

【CDA干货】Pandas quoting 详解:掌控文本文件读写中的引号规则,避免数据解析陷阱

【CDA干货】Pandas quoting 详解:掌控文本文件读写中的引号规则,避免数据解析陷阱
2025-09-28
在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京,朝阳”)、嵌套引号(如 “他说:"明天加班"”)时,若未正确配置引号处理规则,Pan ...

CDA 数据分析师:以指标为钥,解锁数据驱动价值

CDA 数据分析师:以指标为钥,解锁数据驱动价值
2025-09-23
CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散的数字集合,若缺乏统一的衡量标准,便无法转化为指导业务的有效信息。而指标,正是将 ...

【CDA干货】算术平均数(Mean)与几何平均数(GeoMean):核心区别与适用场景解析

【CDA干货】算术平均数(Mean)与几何平均数(GeoMean):核心区别与适用场景解析
2025-09-22
在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指向的是算术平均数(Arithmetic Mean,简称 Mean) ,却忽略了另一类关键指标 ——几何 ...

CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑

CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑
2025-09-19
CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均值、中位数”,到推断总体特征的 “抽样、置信区间”,再到验证业务假设的 “假设检验 ...

【CDA干货】SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化

【CDA干货】SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化
2025-09-18
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论是报表展示(如 “2024 年 09 月”“09/18/2024”)、数据查询(如筛选 “2024 年 Q3 ...

CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者

CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者
2025-09-19
CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字化运营的 “核心载体”,其价值实现依赖 “获取(源头)- 加工(提纯)- 使用(落地) ...

CDA 数据分析师:解锁表结构数据特征价值的专业核心

CDA 数据分析师:解锁表结构数据特征价值的专业核心
2025-09-17
CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、CSV 文件)是企业业务数据的 “基石形态”—— 从零售门店的 “销售明细表” 到金融机 ...

【CDA干货】深入解析卡方检验与 t 检验:差异、适用场景与实践应用

【CDA干货】深入解析卡方检验与 t 检验:差异、适用场景与实践应用
2025-09-16
深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “显著” 的核心工具。卡方检验与 t 检验作为两种基础且常用的假设检验方法,常被用于分 ...

CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手

CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手
2025-09-16
CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据库表、CSV 文件)是企业业务数据的 “主流形态”—— 从零售的 “门店销售表” 到金融 ...

【CDA干货】解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南

【CDA干货】解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南
2025-09-15
解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests库),开发者常会接触到响应对象(Response)的两个核心属性 ——text和content。二者 ...

CDA 数据分析师:激活表格结构数据价值的核心操盘手

CDA 数据分析师:激活表格结构数据价值的核心操盘手
2025-09-15
CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 —— 从零售门店的销售明细表,到金融机构的客户信贷记录表,再到互联网平台的用户行为 ...

【CDA干货】解决 pd.read\_csv 读取长浮点数据的科学计数法问题

【CDA干货】解决 pd.read\_csv 读取长浮点数据的科学计数法问题
2025-09-12
解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题,我将从问题根源切入,先解析科学计数法的触发机制,再系统拆解pd.read_csv参数配置、 ...

【CDA干货】统计模型的核心目的:从数据解读到决策支撑的价值导向

【CDA干货】统计模型的核心目的:从数据解读到决策支撑的价值导向
2025-09-10
统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定目标构建的 “数据 - 逻辑 - 结论” 转化载体。在实际应用中,相同的数据通过不同目的 ...

【CDA干货】解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心

【CDA干货】解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心
2025-09-02
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算” 与 “参数更新” 的关键桥梁。它不仅负责触发梯度的反向传播计算,在分布式训练场 ...

【CDA干货】K-S 图的横轴设计

【CDA干货】K-S 图的横轴设计
2025-09-02
要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴的定义逻辑与分布检验的需求来分析。以下从 K-S 图的本质、横轴设计原则及实际应用场 ...

【CDA干货】数据清洗工具全景指南:从入门到进阶的实操路径

【CDA干货】数据清洗工具全景指南:从入门到进阶的实操路径
2025-08-29
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道关卡”—— 据 Gartner 统计,数据分析师约 60% 的时间消耗在清洗脏数据(如缺失值、异 ...

CDA 数据分析与量化策略分析流程:协同落地数据驱动价值

CDA 数据分析与量化策略分析流程:协同落地数据驱动价值
2025-08-29
CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA 数据分析流程解决 “数据怎么用” 的问题,量化策略分析流程解决 “策略怎么跑” 的问 ...

描述性统计:CDA数据分析师的基础核心与实践应用

描述性统计:CDA数据分析师的基础核心与实践应用
2025-08-22
描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analyst)数据分析师认证体系中,描述性统计是贯穿初级到中级认证的核心模块,占比约 15%。 ...

CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用

CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用
2025-08-18
CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库表、CSV 文件等)是最基础、最常用的数据形态之一。这类数据以清晰的行列结构承载信息 ...

【CDA干货】Pandas 多列条件筛选:从基础语法到实战应用

【CDA干货】Pandas 多列条件筛选:从基础语法到实战应用
2025-08-12
Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的样本,还是清洗异常数据,Pandas 都提供了灵活高效的多条件处理机制。本文将系统梳理 ...

OK
客服在线
立即咨询