
当编写任何编程语言程序,需要使用不同的变量来存储各种信息。变量不过是用于保留存储器位置的存储值。这意味着,当创建一个变量,它会保留在内存中的一些空间。
你可能喜欢存储诸如字符以外的数据类型,如:宽字符,整型,浮点型,双浮点型,布尔等信息。基于变量的数据类型,操作系统分配内存,并决定什么可以存储在存储器。
在其他编程语言中,如C和JavaR中的变量没有声明为某些数据类型。变量分配R-对象和R对象的数据类型变为变量的数据类型。有许多类型的R-对象。常用的有:
矢量
列表
矩阵
数组
因子
数据帧
这些对象的是最简单的矢量对象并且这些原子矢量有六种数据类型,也被称为六类向量。另外R-对象是建立在原子向量。
因此,在R语言中的非常基本的数据类型是R-对象,如上图所示占据着不同类别的元素向量。请注意R语言中类的数量并不只限于上述的六种类型。 例如,我们可以使用许多原子向量以及创建一个数组,它的类将成为数组。
向量
当您希望使用多个元素创建向量,应该使用c()函数,这意味着元素结合成一个向量。
# Create a vector.
apple <- c('red','green',"yellow")
print(apple)
# Get the class of the vector.
print(class(apple))
当我们上面的代码执行时,它产生以下结果:
[1] "red" "green" "yellow"
[1] "character"
列表
列表是R-对象,它里面可以包含多个不同类型的元素,如向量,函数,甚至是另一个列表。
# Create a list.
list1 <- list(c(2,5,3),21.3,sin)
# Print the list.
print(list1)
当我们上面的代码执行时,它产生以下结果:
[[1]]
[1] 2 5 3
[[2]]
[1] 21.3
[[3]]
function (x) .Primitive("sin")
矩阵
矩阵是一个二维矩形数据集。它可以使用一个向量输入到矩阵函数来创建。
# Create a matrix.
M = matrix( c('a','a','b','c','b','a'), nrow=2,ncol=3,byrow = TRUE)
print(M)
当我们上面的代码执行时,它产生以下结果:
[,1] [,2] [,3]
[1,] "a" "a" "b"
[2,] "c" "b" "a"
数组
尽管矩阵限于两个维度,数组可以是任何数目的尺寸大小。数组函数使用它创建维度的所需数量的属性-dim。在下面的例子中,我们创建了两个元素数组,这是3×3矩阵。
# Create an array.
a <- array(c('green','yellow'),dim=c(3,3,2))
print(a)
当我们上面的代码执行时,它产生以下结果:
, , 1
[,1] [,2] [,3]
[1,] "green" "yellow" "green"
[2,] "yellow" "green" "yellow"
[3,] "green" "yellow" "green"
, , 2
[,1] [,2] [,3]
[1,] "yellow" "green" "yellow"
[2,] "green" "yellow" "green"
[3,] "yellow" "green" "yellow"
因子
因子是使用向量创建的R对象。它存储随同该向量作为标记元素的不同值的向量。 标签始终是字符,而不论它在输入向量的是数字或字符或布尔等。它们在统计建模有用。
运用 factor() 函数创建因子。nlevels 函数给出级别的计数。
# Create a vector.
apple_colors <- c('green','green','yellow','red','red','red','green')
# Create a factor object.
factor_apple <- factor(apple_colors)
# Print the factor.
print(factor_apple)
print(nlevels(factor_apple))
当我们上面的代码执行时,它产生以下结果:
[1] green green yellow red red red yellow green
Levels: green red yellow
# applying the nlevels function we can know the number of distinct values
[1] 3
数据帧
数据帧是表格数据对象。不像在数据帧的矩阵,每一列可以包含不同的数据的模型。第一列可以是数字,而第二列可能是字符和第三列可以是逻辑。它与向量列表的长度相等。
数据帧所使用 data.frame()函数来创建。
# Create the data frame.
BMI <- data.frame(
gender = c("Male", "Male","Female"),
height = c(152, 171.5, 165),
weight = c(81,93, 78),
Age =c(42,38,26)
)
print(BMI)
当我们上面的代码执行时,它产生以下结果:
gender height weight Age
1 Male 152.0 81 42
2 Male 171.5 93 38
3 Female 165.0 78 26
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12