
Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据结构,因为它依然是 Python 的一个库,所以 Python 中有的数据类型在这里依然适用。我们分别看一下这两种数据结构:
Series:一维数组。该结构能够放置各种数据类型,比如字符、整数、浮点数等
我们先引入pandas包,这里有一个约定成俗的写法import pandas as pd
将pandas引入,并命其别名为pd
接着将列表[2,3,5,7,11]
放到pd.Series()里面
import pandas as pd
s = pd.Series([2,3,5,7,11],name = 'A')
s
0 2
1 3
2 5
3 7
4 11
Name: A, dtype: int64
同样的,将列['2024-01-01 00:00:00', '2024-01-01 03:00:00','2024-01-01 06:00:00']
放到pd.DatetimeIndex()里面
dts1 = pd.DatetimeIndex(['2024-01-01 00:00:00', '2024-01-01 03:00:00','2024-01-01 06:00:00'])
dts1
DatetimeIndex(['2024-01-01 00:00:00', '2024-01-01 03:00:00',
'2024-01-01 06:00:00'],
dtype='datetime64[ns]', freq=None)
还有另外一种写法pd.date_range
可以按一定的频率生成时间序列
dts2 = pd.date_range(start='2024-01-01', periods=6, freq='3H')
dts2
DatetimeIndex(['2024-01-01 00:00:00', '2024-01-01 03:00:00',
'2024-01-01 06:00:00', '2024-01-01 09:00:00',
'2024-01-01 12:00:00', '2024-01-01 15:00:00'],
dtype='datetime64[ns]', freq='3H')
dts3 = pd.date_range('2024-01-01', periods=6, freq='d')
dts3
DatetimeIndex(['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-04',
'2024-01-05', '2024-01-06'],
dtype='datetime64[ns]', freq='D')
DataFrame:二维的表格型数据结构,可以理解为Series的容器,通俗地说,就是可以把Series放到DataFrame里面。
它是一种二维表格型数据的结构,既有行索引,也有列索引。行索引是 index,列索引是 columns。类似于初中数学里,在二维平面里用坐标轴来定位平面中的点。
注意,DataFrame又是Pandas的核心!接下来的内容基本上以DataFrame为主
先来看看如何创建DataFrame,上面说过Series也好,DataFrame也罢,本质上都是容器。
千万别被”容器“这个词吓住了,通俗来说,就是里面可以放东西的东西。
从字典创建DataFrame
相当于给里面放dict:先创建一个字典d
,再把d
放进了DataFrame
里命名为df
d = {'A': [1, 2, 3],
'B': [4, 5, 6],
'C': [7, 8, 9]}
df = pd.DataFrame(data = d)
df
A | B | C | |
---|---|---|---|
0 | 1 | 4 | 7 |
1 | 2 | 5 | 8 |
2 | 3 | 6 | 9 |
从列表创建DataFrame
先创建了一个列表d
,再把d
放进了DataFrame
里命名为df
d = [[4, 7, 10],[5, 8, 11],[6, 9, 12]]
df1 = pd.DataFrame(
data = d,
index=['a', 'b', 'c'],
columns=['A', 'B', 'C'])
df1
A | B | C | |
---|---|---|---|
a | 4 | 7 | 10 |
b | 5 | 8 | 11 |
c | 6 | 9 | 12 |
从数组创建DataFrame
数组(array)对你来说可能是一个新概念,在Python里面,创建数组需要引入一个类似于Pandas的库,叫做Numpy。与前面引入Pandas类似,我们用 import numpy as np
来引入numpy,命其别名为np。
同样的,先创建一个数组d
,再把d
放进了DataFrame
里命名为df
import numpy as np
d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
df2 = pd.DataFrame(data = d,
index=['a', 'b', 'c'],
columns=['A', 'B', 'C'])
df2
A | B | C | |
---|---|---|---|
a | 1 | 2 | 3 |
b | 4 | 5 | 6 |
c | 7 | 8 | 9 |
以上,我们用了不同的方式来创建DataFrame,接下来,我们看看创建好后,如何查看数据
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。 它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。 扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
下一节 《第2节 Pandas简介》
这里分享一个你一定用得到的小程序——CDA数据分析师考试小程序。 它是专为CDA数据分析认证考试报考打造的一款小程序。可以帮你快速报名考试、查成绩、查证书、查积分,通过该小程序,考生可以享受更便捷的服务。 扫码加入CDA小程序,与圈内考生一同学习、交流、进步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08